
THE OSCULATING

CIRCUMFERENCE PROBLEM

School

I.S.I.S.S. �M. Casagrande� � Pieve di Soligo, Treviso � Italy

Students

Silvia Micheletto (I) Azzurra So�a Pizzolotto (IV)
Luca Barisan (II) Simona Sota (IV)
Gaia Barella (IV) Paolo Barisan (V)
Marco Casagrande (IV) Anna De Biasi (V)
Chiara De Rosso (IV) Silvia Giovani (V)
Maddalena Favaro (IV) Klara Metaliu (V)

Teachers

Fabio Breda
Francesco Maria Cardano

Davide Palma
Francesco Zampieri

Researcher

Alberto Zanardo, University of Padova � Italy

Year 2019/2020



The osculating circumference problem

ISISS �M. Casagrande�, Pieve di Soligo, Treviso � Italy

Abstract

The aim of the article is to study the osculating circumference i.e. the circumference which best
approximates the graph of a curve at one of its points. We will de�ne this circumference and we
will describe several methods to �nd it. Finally we will introduce the notions of round points and
crossing points, points of the curve where the circumference has interesting properties.
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The osculating circumference problem

ISISS �M. Casagrande�, Pieve di Soligo, Treviso � Italy

Introduction

Our research was born from an analytic geometry problem studied during the third year of high
school.

The problem. Let P : y = x2 be a parabola and A and B two points of the curve symmetrical
about the axis of the parabola. Find the equation of the circumference C tangent to the parabola
in the given points.
We solved the problem but it led to some interesting questions.

Let A(x0;x20) and B = (−x0;x20) be the two symmetrical points. We look for the center of the
circumference and we notice that it must belong to the y-axis due to symmetry reasons. This center
can be determined as the intersection point between the normal lines to the curve respectively at A
and B.

The coordinates of the center C depend on the coordinates of the two tangency points A e B: we
wondered how the coordinates of C vary when A and B vary, in particular if A and B approach to
the vertix V of the parabola (x0 → 0).

Our first hypothesis was that if A→ V and B → V then yC → +∞, given that the absolute
value of the slopes of the normal lines increases when A→ V and B → V .
However we noticed that this hypothesis is not correct because there is another variation that should
be considered that is the decrease of the ordinates of A and B.

Our second hypothesis was that if A→ V and B → V then yC → yV . However we understood
that even this guess is wrong. In fact we are able to prove that the point C approaches to a point
di�erent from V . We determine the equations of the normal lines to the curve nA and nB at A and
B and the center C as the intersection point between the two normal lines. The equations of the
tangent lines in A and B are:

tA : y = 2xx0 + x20, tB : y = −2xx0 − x20.
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It follows that the equations of the normal lines are:

nA : y = x20 −
1

2x0
(x− x0), nB : y = x20 −

1

2x0
(x+ x0).

The coordinates of C are the solutions of the system
y = x20 −

1

2x0
(x− x0)

y = x20 +
1

2x0
(x+ x0)

,

and we get

C

(
0;x20 +

1

2

)
.

Then if A→ V and B → V then yC → 1
2
. This is a consequence of

lim
A→V

yC = lim
B→V

yC = lim
x0→0

yC = lim
x0→0

(
x20 +

1

2

)
=

1

2
.

This means that C approaches to the point
(
0; 1

2

)
. Since CA = CB =

√
x20 + 1

4
the equation of the

circumference C tangent at the parabola at A and B is

C : x2 +

(
y − x20 −

1

2

)2

= x20 +
1

4
⇒ C : x2 + y2 − (2x20 + 1)y − x40 = 0.

In the case in which A → V and B → V the circumference C approaches to the circumference of
equation x2 + y2 − y = 0.

This circumference has some interesting properties:

• it intersects the parabola in the vertex V ;

• it is tangent to the parabola in the vertex V ;

• and �nally we observed that the graphs of the circumference and of the parabola, in a neigh-
bourhood of the vertex V , are very similar.

Here starts our research. Given a plane curve, we are now looking for the circumference that has
got these three properties in one of its points.

Pieve di Soligo,
2020, June.
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1 The osculating circumference

We started by giving a de�nition of what being �very similar� means and in order to do so we

analysed the Taylor series expansion. However a Taylor series is de�ned for a function and we

know that a circumference is not the graphic of a function so to overcome this problem we focused

on the semicircumferences.

De�nition 1.0.1. Given the circumference C of radius r and center C(xC ; yC). The upper semi-

circumference U is the set of the points (x; y) ∈ C such that y > yC . The lower semicircunference

L is the set of the points (x; y) ∈ C such that y < yC . Given U or L, the circumference C is

called the associated circumference to U or L.

De�nition 1.0.2. Let f ∈ C3(I), with I ⊆ R, a function and a point x0 ∈ I such that f ′′(x0) 6=
0. The osculating circumference Cf (x0) of a function f in x0 is the circumference associated

to the upper semicircumference (if f ′′(x0) < 0) or the lower semicircumference (if f ′′(x0) > 0)
which has the same Taylor series expansion to second order of f at x0.

Theorem 1.0.3. Let Cf (x0) be the osculating circumference of a function f ∈ C3(I) in x0 ∈ I,
then the radius r is given by

r =

[
1 + f ′(x0)2

] 3
2

| f ′′(x0) |
,

and the centre C has the following coordinates

C

(
x0 −

f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
; f(x0) +

[
1 + f ′(x0)2

]
f ′′(x0)

)
.

Proof. Let f ∈ C3(I)a function and C(xC ; yC) be the centre and r the radius of the osculating

circumference of the function in x0. The circumference has equation (x−xC)2 + (y− yC)2 = r2.

Let's distinguish four cases:

(a) f ′(x0) > 0, f ′′(x0) > 0,

(b) f ′(x0) > 0, f ′′(x0) < 0,

(c) f ′(x0) < 0, f ′′(x0) > 0,

(d) f ′(x0) < 0, f ′′(x0) < 0.

In case (a) the semicircumference has equation y = yC −
√
r2 − (x− xC)2 since f ′′(x0) > 0.

The second order Taylor polynomial of f at x0 is

f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2,

while the second order Taylor polynomial of y at x0 is

y(x0) +
y′(x0)

1!
(x− x0) +

y′′(x0)

2!
(x− x0)2.
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Given that these two expression must be equal according to the De�nition 1.0.2, we have to

impose that the two functions and their prime and second derivatives must be equal:

f(x0) = yC −
√
r2 − (x0 − xC)2

f ′(x0) =
x0 − xC√

r2 − (x0 − xC)2

f ′′(x0) =
r2√

[r2 − (x0 − xC)2]3

. (1)

From the second of (1) and from f ′(x0) > 0 we deduce that x0 − xC > 0. If we consider the
second power of both sides of the second equation of (1) we get

(x0 − xC)2 =
f ′(x0)2 r2

1 + f ′(x0)2
. (2)

The second power of both sides of the third of (1) leads to

f ′′(x0)2[r2 − (x0 − xC)2]3 = r4; (3)

subsituting (2) in (3) we get an explicit expression for r:

f ′′(x0)2

[
r2 − f ′(x0)2 r2

1 + f ′(x0)2

]3

= r4 =⇒ r2 =

[
1 + f ′(x0)2

]3
f ′′(x0)2

, (4)

and so

r =

[
1 + f ′(x0)2

] 3
2

| f ′′(x0) |
. (5)

By substituting (4) in (2) we can �nd xC :

x0 − xC =

∣∣∣∣ f ′(x0)

f ′′(x0)

∣∣∣∣ [1 + f ′(x0)2
]
, (6)

and so by hypothesis

xC = x0 −
f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
.

And then �nally we substitute (4) and the square of (6) in the �rst equation of (1) in order to

get yC :

yC = f(x0) +
f ′(x0)2 + 1

f ′′(x0)
,

where we took away the absolute value by hypothesis. By the analysis of the four cases we got

the same radius (5) beacuse the signes of f ′(x0) and f ′′(x0) do not a�ect the expression of r. As
far the coorinadates of C are concerned we get:

(a) C

(
x0 −

f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
; f(x0) +

[
1 + f ′(x0)2

]
f ′′(x0)

)
;

(b) C

(
x0 +

f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
; f(x0)−

[
1 + f ′(x0)2

]
f ′′(x0)

)
;
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(c) C

(
x0 +

f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
; f(x0) +

[
1 + f ′(x0)2

]
f ′′(x0)

)
;

(d) C

(
x0 −

f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
; f(x0)−

[
1 + f ′(x0)2

]
f ′′(x0)

)
.

We noticed that the combination of the signes of f ′(x0) and f ′′(x0) lead always to the same

expresssion:

C

(
x0 −

f ′(x0)

f ′′(x0)

[
1 + f ′(x0)2

]
; f(x0) +

[
1 + f ′(x0)2

]
f ′′(x0)

)
.

Theorem 1.0.4. Let f ∈ C3(I), I ⊆ R, a function and let x0 ∈ I be a point such that f ′′(x0) 6= 0.
Given three points P (x0; f(x0)) Q(x0 − h; f(x0 − h)) and R(x0 + k; f(x0 + k)) with h, k > 0.
Let C be the interception point between the normal straight lines at Q,R and CQ and CR be the

circumferences with centre C and radius respectively equal to QC and RC. If h, k approach 0,
then CQ and CR approach Cf (x0).

Proof. Let the line y = f(x0 − h) +m[x− (x0 − h)] be the tangent to the function in the point

Q which slope is m = f ′(x0 − h). The normal line to the tangent is

y = f(x0 − h)− 1

f ′(x0 − h)
[x− (x0 − h)].

In an analogous way, the normal line to the tangent at the point R is The normal line to the

tangent is

y = f(x0 + h)− 1

f ′(x0 + h)
[x− (x0 + h)].

Given these two equations, it is now possible to calculate the coordinates of the point C. From

f(x0 − h)− x− (x0 − h)

f ′(x0 − h)
= f(x0 + h)− x− (x0 + h)

f ′(x0 + h)

we deduce that

x =
[f(x0 + h)− f(x0 − h)] f ′(x0 − h)f ′(x0 + h)

f ′(x0 − h)− f ′(x0 + h)
+

(x0 + h)f ′(x0 − h)− (x0 − h)f ′(x0 + h)

f ′(x0 − h)− f ′(x0 + h)

=
[f(x0 + h)− f(x0 − h)] f ′(x0 − h)f ′(x0 + h)

f ′(x0 − h)− f ′(x0 + h)
+ x0 +

f ′(x0 − h) + f ′(x0 + h)

f ′(x0 − h)− f ′(x0 + h)

=
[f(x0 + h)− f(x0 − h)] f ′(x0 − h)f ′(x0 + h) + h [f(x0 + h) + f(x0 − h)]

f ′(x0 − h)− f ′(x0 + h)
+ x0.

By Lagrange's theorem there exists c ∈ (x0 − h;x0 + h) such that [f(x0 + h)− f(x0 − h)] =
2h f ′(c) and there exists d ∈ (x0−h;x0 +h) such that f ′(x0−h)− f ′(x0 +h) = −2h f ′′(d), then

x = x0 +
2hf ′(c) f ′(x0)2 + 2h f ′(x0)

2h f ′′(d)
.
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As c, d→ x0 the abscissa of the centre becomes

x = x0 +
|f ′(x0)| [1 + f ′(x0)2]

|f ′′(x0)|
;

substituting the abscissa of C in the equation of the normal line, the ordinate of the centre is

y = f(x0)− 1 + f ′(x0)2

|f ′′(x0)|
.

The lenght of the radius PC is:

PC =

√
[1 + f ′(x0)2]2f ′(x0)2

f ′′(x0)2
+

[1 + f ′(x0)2]

f ′′(x0)2
=

[1 + f ′(x0)2]
3
2

|f ′′(x0)|
.

Theorem 1.0.5. Let f ∈ C3(I), I ⊆ R, a function and let x0 ∈ I be a point such that

f ′′(x0) 6= 0. Given three points P (x0; f(x0)), Q(x0−h; f(x0−h)) and R(x0 +k; f(x0 +k)) with

h, k > 0. Let Ch,k be the circumference through P,Q,R; if h, k approach 0 then Ch,k approaches

Cf (x0).

Proof. Let C be the circumference of equation x2 + y2 + ax + by + c = 0 and radius r =√(
−a

2

)2
+
(
− b

2

)2 − c. The circumference determinated by three points P (x0; f(x0)), Q,R has

radius equal to:

r(x0, h) =
α(x0, h)β(x0, h) γ(x0, h)

2|h [2f(x0)− f(x0 − h)− f(x0 + h)]|
,

where

α(x0, h) =
√

[f(x0)− f(x0 + h)]2 + h2,

β(x0, h) =
√

[f(x0)− f(x0 − h)]2 + h2,

γ(x0, h) =
√

[f(x0 − h)− f(x0 + h)]2 + 4h2.

Given that f ∈ C3, then it satis�es the Lagrange's Theorem in [x0−h, x0 +h]. If we consider
the interval [x0, x0 + h] then there exists a point of abscissa i ∈]x0, x0 + h[ such that

f ′(i) =
f(x0 + h)− f(x0)

h
,

which can be expressed as f(x0)− f(x0 + h) = −h f ′(i) and because of this α can be written as

α(x0, h) =
√

[f(x0)− f(x0 + h)]2 + h2 =
√
h2 f ′(i)2 + h2 = h

√
f ′(i)2 + 1.

In an analogous way, there exists a point of abscissa j ∈]x0 − h, x0[ such that

f ′(j) =
f(x0)− f(x0 − h)

h
.

Then f(x0)− f(x0 − h) = h f ′(j), so

β(x0, h) =
√

[f(x0)− f(x0 − h)]2 + h2 =
√
h2f ′(j)2 + h2 = h

√
f ′(j)2 + 1.
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Similarly to the previous case, considering the interval [x0−h, x0 +h] it exists a point of abscissa
l ∈]x0 − h, x0 + h[ such that

f ′(l) =
f(x0 + h)− f(x0 − h)

2h
;

then f(x0 − h)− f(x0 + h) = −2h f ′(l) and so

γ(x0, h) =
√

[f(x0 − h)− f(x0 + h)]2 + 4h2 =
√

4h2f ′(k)2 + 4h2 = 2h
√
f ′(k)2 + 1.

Now it is possible to express again the radius as

1

2|h [2f(x0)− f(x0 − h)− f(x0 + h)]|
=

1

2|h [f(x0)− f(x0 − h)− (f(x0 + h)− f(x0))]|
;

applying Lagrange's theorem to the radius formula it is possible to write

1

2|h [2f(x0)− f(x0 − h)− f(x0 + h)]|
=

1

2|h2 [f ′(j)− f ′(i)]|
.

Let's calculate the limit of the radius for h→ 0:

lim
h→0

r(x0, h) = lim
h→0

2h3

2|h2 [f ′(j)− f ′(i)]|
√
f ′(i)2 + 1

√
f ′(j)2 + 1

√
f ′(k)2 + 1

= lim
h→0

h3

|h2[f ′(j)− f ′(i)]|
√
f ′(x0)2 + 1

√
f ′(x0)2 + 1

√
f ′(x0)2 + 1.

Once again it is possible to apply Lagrange's theorem to the function in I = [i, j], where
i > j because the point i belongs to the right neighborhood of x0 and j to its left one. Then it

exists a point of abscissa t ∈]i, j[ such that

f ′′(t) =
f ′(i)− f ′(j)

i− j
=⇒ f ′(j)− f ′(i) = −(i− j) f ′′(t).

Then:

lim
h→0

r(x0, h) = lim
h→0

h3

|h2 [h f ′′(x0)]|
√
f ′(x0)2 + 1

√
f ′(x0)2 + 1

√
f ′(x0)2 + 1

= lim
h→0

h3
√

(f ′(x0)2 + 1)3

h3|f ′′(x0)|
=

[1 + f ′(x0)2]3/2

|f ′′(x0)|
.

This last expression is equal to the expression of the radius of the osculating circle of f evaluated

at x = x0.

1.1 Particular cases: the formulas cannot be applied

Once that the osculating circumference was de�ned we moved to look for a method to de�ne the
osculating circumference in some particular points where the formulas cannot be applied. Let's
start by analysing the case in which the left derivative does not exist.
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Example 1.1.1. Let's consider the function f(x) =
√
x, in the point O(0; 0). Let's de�ne a point

A(x; f(x)) with x ≥ 0 and let's calculate the radius of the osculating circumference in this point and
make the point A approach O, using Theorem 1.0.3. In order to do this it is necessary to calculate
the prime and second derivatives of the function f(x) =

√
x. Then

f ′(x) =
1

2
√
x

; f ′′(x) = − 1

4
√
x3
.

Hence the radius is the limit of the formula previously found as x approaches 0.

r = lim
x→0+

[
1 + f ′(x)2

]3/2
| f ′′(x) | = lim

x→0+

[
1 +

(
1

2
√
x

)2
]3/2

∣∣∣∣− 1

4
√
x3

∣∣∣∣ =
1

2
.

Thanks to Theorem 1.0.3, it is now possible to calculate the coordinates of the centre C of the
osculating circumference.

xC = lim
x→0+

(
x− f ′(x)

f ′′(x)

[
1 + f ′(x)2

])
= lim
x→0+

(
x+ 2x+

1

2

)
=

1

2
;

yC = lim
x→0+

(
f(x) +

[
1 + f ′(x)2

]
f ′′(x)

)
= lim
x→0+

(√
x− (4x+ 1)

√
x
)

= 0.

Hence, the equation of the osculating circumference is

(
x− 1

2

)2

+ y2 =
1

4
. �

Now let's analyse the case in which the function has an in�ection point where the tangent

line is vertical.

Example 1.1.2. Let's consider the function f(x) = 3
√
x in the point O(0; 0). Let's de�ne a point

A(x; f(x)) and B(−x; f(−x)) and let's calculate the radius of the osculating circumference in this
point and make the points A and B approach respectively O+ from the right side and O− from the
left side, using Theorem 1.0.3. The prime and the second derivatives are

f ′(x) =
1

3
3
√
x2

; f ′′(x) = − 2

9
3
√
x5
.

Hence the radius is the limit of the formula previously found as x approaches 0.

r = lim
x→0±

(
1 +

1

9
3
√
x4

)3/2

∣∣∣∣− 2

9
3
√
x5

∣∣∣∣ =

√√√√(9
3
√
x4 + 1

)3
36

3
√
x2

= +∞.

10



Now, thanks to Theorem 1.0.3, it is possible to calculate the coordinates of the centre C of the
osculating circumference:

xC = lim
x→0±

(
x+

3

2
x+

x

6 3
√

4

)
= ±∞;

yC = lim
x→0±

 3
√
x+

(
1 +

1

9
3
√
x4

)
(
− 2

9
3
√
x5

)
 = 0.

So the osculating circumference has as length of the radius +∞, this means that the osculating
circumference approaches a line passing through the point O(0, 0). Therefore, the osculating circum-
ference degenerates into the straight line of equation x = 0. �

Now let's analyse the case in which the function is a cusp.

Example 1.1.3. Let's consider the function f(x) =
3
√
x2 in the point O(0; 0). Let's de�ne a point

A(x; f(x)) and B(−x; f(−x)) and let's calculate the radius of the osculating circumference in this
point and make the points A and B approach respectively O+ and O−, using Theroem 1.0.3, as done
previously. The prime and the second derivatives are

f ′(x) =
2

3 3
√
x

; f ′′(x) = − 2

9
3
√
x4
.

And the radius is the limit of the formula previously used as x approaches 0.

r = lim
x→0±

(
1 +

4

9
3
√
x2

)3/2

∣∣∣∣− 2

9
3
√
x4

∣∣∣∣ = 0+.

Then, it is possible to calculate the coordinates of the centre C of the osculating circumference:

xC = lim
x→0±

(
x+ 3x+

4

3
3
√
x

)
= 0±;

yC = lim
x→0±

(
3
√
x2 − 9

2
3
√
x4 − 2

3
√
x2
)

= 0+.

These results mean that as the point A and B approaches O there are two osculating circumferences
which degenerate into the point O. �
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Now let's analyse the case in which the function has a corner point.

Example 1.1.4. Let's consider the function f(x) = |x2 − 1| which has two corner points A(1; 0)
and B(−1; 0). Let's analyse only the point A.
Let's de�ne two points D(h; f(h)) and E(k; f(k)) with h > 1 and 0 < k < 1. As done before we
calculate the prime and the second derivatives of f(x).

• If x > 1 then the function is f(x) = x2−1 and the prime and second derivatives are f ′(x) = 2x
and f ′′(x) = 2;

• if x < 1 then the function is f(x) = 1− x2 and the prime and second derivatives are f ′(x) =
−2x and f ′′(x) = −2.

And now let's calculate the two radius of the osculating circumferences in the two points D and E
and make them approach A, using Theorem 1.0.3, with x0 = 1.

r1 = lim
h→1+

(1 + 4h2)3/2

|2| =
5
√

5

2
, r2 = lim

k→1−

(1 + 4x2)3/2

| − 2| =
5
√

5

2
.

Then we calculate the coordinates of the centre of the osculating cirumference using Theorem 1.0.3;
note that there are two possibilities.
For h→ 1+ we get

xC1 = lim
h→1+

(
h− 2h

2
· (1 + 4h2)

)
= −4,

yC1 = lim
h→1+

(
h2 − 1 +

1 + 4h2

2

)
=

5

2
;

and for k → 1− we obtain

xC2 = lim
k→1−

(
k − −2k

−2
· (1 + 4k2)

)
= −4,

yC2 = lim
k→1−

(
1− k2 − 1 + 4k2

2

)
= −5

2
.

Then there are two osculating circumferences whose equations are

C1 : (x+ 4)2 +

(
y − 5

2

)2

=
125

4
C2 : (x+ 4)2 +

(
y +

5

2

)2

=
125

4
.

�
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Now let's analyse the case in which the function has an in�ection point.

Example 1.1.5. Let's consider the function f(x) = x3 − x in the point O(0; 0). Let's de�ne two
points A(x; f(x)) and B(−x; f(−x)) and let's calculate the radius of the osculating circumference in
O(0; 0) and make the points A and B approach respectively O+ from the right side and O−, using
Theorem 1.0.3. The prime and the second derivatives are

f ′(x) = 3x2 − 1; f ′′(x) = 6x.

Hence the radius is the limit of the formula previously found as x approaches 0.

r = lim
x→0±

3
√

(9x4 − 6x2 + 2)2

|6x| =
3
√

4

|6x| = +∞.

Then it is possible to calculate the coordinates of the centre C of the osculating circumference:

xC = lim
x→0±

=
−27x6 + 27x4 − 12x2 + 2

6x
=

1

3x
= ±∞,

yC = lim
x→0±

=
15x4 − 12x2 + 2

6x
=

1

3x
= ±∞.

These results mean that as the points A and B approach O the osculating circumference degenerates
into the straight line y = −x. �
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1.2 Curvature

There is an alternative method that can lead to the osculating circumference. It starts from

the simple observation that there is a direct proportion between the radius of the osculating

circumference and the tendency of the curve to be like a straight line. This property suggests to

analyse the variation of the angle α made by the tangent line to the graphic of the function and

the x-axis.

Let y = f(x) be a function derivable in an interval I and P (x; f(x)) and Q(x+∆x; f(x+∆x))
two points with x ∈ I and ∆x the increment of the variable x. Let ∆α be the angle made by

the two tangents lines to the graphic to the function in P and Q, then ∆α
∆s is the mean variation

of the angle α and so

lim
∆x→0

∆α

∆s
=

dα

ds

is the variation of the angle α in the point P . We observed that the radius of the osculating

circumference decreases as this limit increases so the radius is the reciprocal of the previous limit.

Therefore we calculate this limit. We know that tanα is the prime derivative of f(x) that is
α = arctan f ′(x). Then we derive the composed function α(x) = arctan f ′(x) with respect to x
and we obtain

dα =
f ′′(x)

1 + f ′(x)2
dx.

14



Let's consider the two point P and Q.

We call ∆s the arc length between P and Q. By Pythagoras' Theorem we have that

(PQ)2 = ∆x2 + f(∆x)2.

Then by dividing each member by ∆x2 we obtain(
PQ

∆x

)2

= 1 +

(
∆y

∆x

)2

,

which is equal to (
PQ

∆s

)2(
∆s

∆x

)2

= 1 +

(
∆y

∆x

)2

.

By de�nition, the tangent line to the graphic of the functon in the point P is the limit of

the secant line that intersects the graphic in the points P and Q when Q approaches P . We

calculate the limits of both members for
(
PQ
∆s

)2
approach to 1 and we obtain

(
ds

dx

)2

= 1 +

(
dy

dx

)2

.

Then we have that ds = ±
√

1 + f ′(x)2 dx. We �nally get to the �nal equation of the radius of

the osculating circumference:

r =
ds

dα
= ± [1 + f ′(x)2]

3
2

f ′′(x)
,

which is exactly the same result obtained with the other methods.

2 Round points

From Theorem 1.0.4 we can deduce that the intersection point P between the graphic of a

function f and its osculating circumference in P can be considered as three overlapping points.

Let's show an example.
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Example 2.0.1. We consider the function of equation y = f(x) = −4x3 − 4x2 − x and the point
B(0; 0) of its graphic.

The �gure shows the graphic of the function and its osculating circumference in B. In order to �nd
the coordinates of the intersection points we build a system between the equation of the function and
the equation of the osculating circumference:−4x3 − 4x2 − x = y

x2 + y2 +
1

2
x+

1

2
y = 0

.

Solving the system, we get the equation x3(2x+1)(4x2 +6x+3) = 0 which has six solutions: x1 = 0,
x2 = 0, x3 = 0, x4 = − 1

2
and two complex solutions. Then the intersection points are A

(
− 1

2
; 0
)

and B(0; 0) and we can observe that the point B can be considered as three overlapping points. �

Now we want to formalize this concept.

De�nition 2.0.1. Let p(x) be a polynomial in R[x] and a one of its roots, the multiplicity of the

root a of the polynomial p(x) is the maximum positive integer m such that p(x) can be divided

by (x− a)m. We will call a an m-ple root.

De�nition 2.0.2. Let p(x) be a polynomial in R[x], p(x) = 0 its algebraic associated equation

and a a solution of p(x) = 0, the multiplicity of the solution a of the algebraic equation p(x) = 0
is the multiplicity of a as a root of the polynomial p(x). We will call a an m-ple solution.

De�nition 2.0.3. Let p(x, y) = 0 and q(x, y) = 0 be two algebraic curves with p(x, y) and q(x, y)
in R2[x, y] and one common point P , the multiplicity of intersection between the two curves at

the point P is the multiplicity of the abscissa or the ordinate of point P as solutions of the

solving equation of the system of equations p(x, y) = 0 and q(x, y) = 0. We will call m-ple the

intersection between the two curves or we will call P an m-ple intersection point for the curves.

Since every function can be locally expressed by its Taylor polynomial we can extend our

de�nitions and theorems to non-algebraic curves and curves that are not functions. Then we

write a new de�nition suitable for our problem.

De�nition 2.0.4. Given a plane curve, one of its points P and the osculating circumference

of the curve in this point, the multiplicity of intersection between the curve and its osculating

circumference in P is de�ned as the multiplicity of intersection between the circumference and

Taylor polynomial of the curve.
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Then, in Example 2.0.1, B is a third interception point between the cubic and the osculating

circumference, because its abscissa is a third solution of the solving equation of the system made

by the equations of the curves.

Let's show another example.

Example 2.0.2. We consider now the function of equation y = f(x) = x3 − 2x2 + 2x− 1.

In this example we can see that the two curves have only one common point A, which is a quadruple
intersection point between the two curves. In fact we get the following system of equations:{

y = x3 − 2x2 + 2x− 1

x2 + y2 − 2y − 1 = 0
.

and the solving equation (x− 1)4(x2 + 2) = 0, which has four solutions x1 = x2 = x3 = x4 = 1. We
call A(1; 0) a quadruple intersection point between the curves. �

We can state that all the common points between the osculating circumference and the

algebraic curve are at least triple points, but some are quadruple or even more.

So we have some questions: do all curves have quadruple points? Is there a way to �nd them?

Is it possible to consider graphics of functions and not only algebraic curve?

While solving Example 2.0.1, we observed that at point B(0; 0) it was

• for the cubic

f(0) = 0, f ′(0) = −1, f ′′(0) = −8, f ′′′(0) = −24;

• for the osculating circumference

Cf (0) = 0, C′f (0) = −1, C′′f (0) = −8, C′′′f (0) = −96.

In Example 2.0.2 we observed that at point A(1; 0) it was

• for the cubic

f(1) = 0, f ′(1) = 1, f ′′(1) = 2, f ′′′(1) = 6, f (4)(1) = 0;

• for the osculating circumference

Cf (1) = 0, C′f (1) = 1, C′′f (1) = 2, C′′′f (1) = 6, C(4)
f (1) = 36.
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Therefore there is a link between the multiplicity of an intersection between the graphics of

two algebraic curves at one point and their derivatives.

Theorem 2.0.5. Let f, g ∈ Cn([a; b]) be two functions. Given x0 ∈ [a, b] such that f(x0) = g(x0),
if f (k)(x0) = g(k)(x0), for all k = 1, . . . , n − 1 and f (n)(x0) 6= g(n)(x0) with n ∈ N, then

P (x0, f(x0)) is n-ple intersection point for the curves y − f(x) = 0 and y − g(x) = 0 and vice

versa.

Proof. Let's consider the two Taylor polynomial of the functions to n-th order in the neighbour-
hood of x0. There exist ξ1 ∈ (x0, x) and ξ2 ∈ (x0, x) such that
f(x) = f(x0) + f ′(x0)(x− x0) +

f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +

f (n+1)(ξ1)

(n+ 1)!
(x− x0)n+1

g(x) = g(x0) + g′(x0)(x− x0) +
g′′(x0)

2!
(x− x0)2 + · · ·+ g(n)(x0)

n!
(x− x0)n +

g(n+1)(ξ2)

(n+ 1)!
(x− x0)n+1

.

By putting the two conditions together and knowing that that f(x0) = g(x0), f (k)(x0) = g(k)(x0)
for k = 1, . . . , n− 1 and f (n)(x0) 6= g(n)(x0) we get

f (n)(x0)

n!
(x− x0)n +

f (n+1)(ξ1)

(n+ 1)!
(x− x0)n+1 − g(n)(x0)

n!
(x− x0)n − g(n+1)(ξ2)

(n+ 1)!
(x− x0)n+1 = 0

and factorizing a term (x− x0)n we have

(x− x0)n

[
f (n)(x0)

n!
− g(n)(x0)

n!
+
f (n+1)(ξ1)

(n+ 1)!
(x− x0)− g(n+1)(ξ2)

(n+ 1)!
(x− x0)

]
= 0.

Therefore, if x0 is an n-ple solution of the equation then P (x0; f(x0)) is n-ple intersection point

between the curves y − f(x) = 0 and y − g(x) = 0.
Vice versa if x0 is an n-ple solution of the solving equation of the system above, then the

polynomial

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +

f (n+1)(ξ1)

(n+ 1)!
(x− x0)n+1+

− g(x0)− g′(x0)(x− x0)− g′′(x0)

2!
(x− x0)2 − · · · − g(n)(x0)

n!
(x− x0)n − g(n+1)(ξ2)

(n+ 1)!
(x− x0)n+1

is divided by (x− x0)n that is the polynomial

f(x0)−g(x0)+[f ′(x0)−g′(x0)](x−x0)+· · ·+f (n)(x0)− g(n)(x0)

n!
(x−x0)n+

f (n+1)(ξ1)− g(n+1)(ξ2)

(n+ 1)!
(x−x0)

is divided by (x− x0)n therefore

f(x0) = g(x0), f ′(x0) = g′(x0), . . . f (n−1)(x0) = g(n−1)(x0),

but fn(x0) 6= gn(x0).

We are going to focus on a particular type of points.

De�nition 2.0.6. Given a plane curve a round point is its quadruple intersection point P
between the curve and the osculating circumference at P .
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Now we are able to state a helpful result in order to look for round points.

Theorem 2.0.7. Let f ∈ Cn([a; b]) be a function, let P (x0; f(x0)) be a point of the graphic of f
and let Cf (x0) be the osculating circumference of f in x0 then

C′′′f (x0) =
3f ′(x0) f ′′(x0)2

1 + f ′(x0)2
, (7)

C(4)
f (x0) =

3 [1 + 5f ′(x0)] f ′′(x0)3

[1 + f ′(x0)2]2
. (8)

Proof. Let's prove (7). Given C : (x−xC)2 +(y−yC)2 = r2 the generic equationof the osculating

circumference of centre (xC ; yC), we �rst isolate y:

y(x) = yC ±
√
r2 − (x− xC)2.

We calculate the derivatives up to the third order at x0:

y′(x0) = ± x0 − xC√
r2 − (x0 − xC)2

,

y′′(x0) = ± r2

[r2 − (x0 − xC)2]3/2
,

y′′′(x0) = ± 3r2(x0 − xC)

[r2 − (x0 − xC)2]5/2
.

According to Theorem 1.0.3 the abscissa of the centre of the osculating circumference is:

xC = x0 −
1 + f ′(x0)2

f ′′(x0)
f ′(x0) ⇒ x0 − xC =

1 + f ′(x0)2

f ′′(x0)
f ′(x0).

So we have

y′′′(x0) = ± 3r2(x0 − xC)

[r2 − (x0 − xC)2]5/2
= ±

3r2 1 + f ′(x0)2

f ′′(x0)
f ′(x0)[

r2 −
(

1 + f ′(x0)2

f ′′(x0)
f ′(x0)

)2
]5/2

.

Then by Theorem 1.0.3 the radius of the osculating circumference is given by

r =

[
1 + f ′(x0)2

]3/2
f ′′(x0)

;

it follows that

y′′′(x0) =

3

[
1 + f ′(x0)2

]3
f ′′(x0)2

1 + f ′(x0)2

f ′′(x0)
f ′(x0)(

1 + f ′(x0)2

f ′′(x0)

)5

= 3

[
1 + f ′(x0)2

]3
f ′′(x0)2

f ′(x0)
[
1 + f ′(x0)2

]
f ′′(x0)

f ′′(x0)5

[1 + f ′(x0)2]5

=
3f ′(x0) f ′′(x0)2

1 + f ′(x0)2
.

19



Since that if (x0; y0) is a round point then y′′′(x0) = f ′′′(x0) we get

f ′′′(x0) =
3f ′(x0) f ′′(x0)2

1 + f ′(x0)2
.

Let's prove now (8). The fourth derivative of the osculating circumference at x0 is

y(4)(x0) = ±
3r2
[
r2 + 4(x0 − xC)2

]
[r2 − (x0 − xC)2]7/2

.

Thanks to Theorem 1.0.3 we can say that

C(4)
f (x0) =

3f ′′(x0)3 [1 + 5f ′(x0)2]

[1 + f ′(x0)2]2
.

The previous Theorem gives us a way to �nd the possible round point of a function or curve.

In fact in order to �nd a round point we have to look for the point for which is true (7) but not

(8). Let's show some examples.

Example 2.0.3. Given the function y = f(x) = ex, we know that f ′(x) = f ′′(x) = f ′′′(x) =
f (4)(x) = ex and so by substituting in (7)

ex =
3ex e2x

1 + e2x
⇒ e2x =

1

2
⇒ x = ln

(√
2

2

)
,

so the point is P
(

ln
(√

2
2

)
;
√

2
2

)
. Now we have to verify if for P the relation C(4)f (xP ) 6= f (4)(xP )

holds. In fact, if y = f(x) = ex,

f (4)

(
ln

(√
2

2

))
=

√
2

2
.

We notice that all the derivatives are equal to
√

2
2

for xP = ln
(√

2
2

)
, then

C(4)f (xP ) = −3f ′′(xP )3 [1 + 5f ′(xP )2]

[1 + f ′(xP )2]2
= −7

√
2

6

and so P is the only round point for the function f(x) = ex.
Similarly, if we want to determine a round point for the function y = g(x) lnx, we �rst calculate the
derivatives of the function:

g′(x) =
1

x
, g′′(x) = − 1

x2
, g′′′(x) =

2

x3
,

then we solve the equation (7):

2

x3
=

3
1

x

1

x

1 +
1

x2

⇒ x =

√
2

2
.

So the function y = g(x) = lnx admits only one round point of coordinates Q
(√

2
2

; ln
(√

2
2

))
. �
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Example 2.0.4. Given the function y = f(x) = sinx, we know that f ′(x) = cosx, f ′′(x) = − sinx,
f ′′′(x) = − cosx and f (4)(x) = sinx and so, by substituing in (7),

− cosx =
3 cosx sin2 x

1 + cos2 x
⇒ cosx

(
1 + cos2 x+ 3 sin2 x

)
= 0 ⇒ x =

π

2
+ kπ, k ∈ Z,

so we obtain two sequences of such points:

Pk =
{(π

2
+ 2kπ; 1

) ∣∣∣ k ∈ Z
}
, Qk =

{(
3π

2
+ 2kπ;−1

) ∣∣∣∣ k ∈ Z
}
.

It's easy to to verify that for Pk or Qk equation (8) is veri�ed. So Pk and Qk are the round points
of the function y = f(x) = sinx. �

Example 2.0.5. The curve of equation1

y =
1

1 + x2

admits three round points. By setting the equation de�ned by (7) and solving the equation (with a
numerical method) we have the following solutions

x1 ' −1, 116424931, x2 = 0, x3 ' 1, 116424931.

It is also possible to show that these three points are round, as their abscissa does not verify (8). �

Example 2.0.6. The normalized Gaussian equation y = e−x
2

admits three round points. By setting
the equation de�ned by (7) and solving the equation (with a numerical method) we have the following
solutions

x1 ' −1, 393716221, x2 = 0, x3 ' 1, 393716221.

It is possibile to show that these three points are round, as their abscissa does not verify (8). �

1This is a particular case of the so called witch of Agnesi.
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3 Beyond round points

We wondered if there exist curves which admit m-uple points with m > 4. We found this

Example 3.0.1. Let's consider the two following curves:

φ(x, y) : x2 + y2 − 2y + x5 = 0, ψ(x, y) : x2 + y2 − 2y − x5 = 0.

It's easy to verify that Cφ, Cψ : x2 + y2 − 2y = 0 is the osculating circumference of φ and ψ in the
origin. By implicit di�erentiation, for all n ∈ N and x, y ∈ R:

Dn[φ(x, y)] = Dn[Cφ(x, y)] +Dn[x5] and Dn[ψ(x, y)] = Dn[Cψ(x, y)]−Dn[x5]

Moreover, if x = y = 0 then Dn[x5] = 0 for n < 5 and Dn[x5] = 5! 6= 0 for n = 5. So in (0; 0)
it is true that Dn[φ(x, y)] = Dn[Cφ(x, y)] for n < 4 while Dn[φ(x, y)] 6= Dn[Cφ(x, y)] for n = 5. In
conclusion the point (0; 0) is a quintuple intersection point for φ and Cφ. Same for ψ, Cψ. �

Let's show another

Example 3.0.2. Let's consider the two following curves:

λ(x, y) : x2 + y2 − 2y + x6 = 0, µ(x, y) : x2 + y2 − 2y − x6 = 0.
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In an analogous way to what has been done in the previous example, we can state that the point
(0; 0) is a sextuple intersection point for λ and C and same for µ. �

Example 3.0.3. Now we are able to generalize the previous results and study the pencil of curves
of equation

γm : x2 + y2 − 2y ± xm = 0. (9)

We can state that (0; 0) is a m-uple intersection point for γm and Cγm . �

3.1 Crossing points

Let's consider again the pencil of curves (9). From the graphics of the previous examples we can

observe a di�erent behaviour of the curves in a neighbourhood of (0; 0) when m is even rather

than when it is odd.

De�nition 3.1.1. Let f, g ∈ Cn([a; b]) be two functions and let x0 ∈ [a, b] be such that f(x0) =
g(x0). We say that f crosses g if f(x) ≷ g(x) in a left neighbourhood of x0 and f(x) ≶ g(x) in

a right neighbourhood of x0; we call (x0; f(x0)) a crossing point of f and g.

Theorem 3.1.2. Let f, g ∈ Cn([a; b]) be two functions and let x0 ∈ [a, b] be such that f(x0) =
g(x0). If f (k)(x0) = g(k)(x0), for k = 1, 2, . . . , n − 1 and f (n)(x0) 6= g(n)(x0), then if, and only

if, n is odd, then (x0; f(x0)) is the crossing point of f and g.

Proof. Let's suppose that x0 = 0. If n is odd, we consider the two Taylor polynomials, with

convenient ξ, ζ in a neighbourhood of 0, such that:

f(x) = f(0) + f ′(0)x+ · · ·+ f (n)(0)

n!
x+

f (n+1)(ξ)

(n+ 1)!
xn+1,

g(x) = g(0) + g′(0)x+ · · ·+ g(n)(0)

n!
xn +

g(n+1)(ζ)

(n+ 1)!
xn+1.
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Let's suppose f (n)(0) > g(n)(0). Let's calculate the following limit:

lim
x→0−

[f(x)− g(x)] = lim
x→0−

[
f (n)(0)

n!
xn +

f (n+1)(ξ)

(n+ 1)!
xn+1 − g(n)(0)

n!
xn +

g(n+1)(ζ)

(n+ 1)!
xn+1

]

= lim
x→0−

(
f (n)(0)

n!
− g(n)(0)

n!

)
xn + lim

x→0−

(
f (n+1)(ξ)

(n+ 1)!
− g(n+1)(ζ)

(n+ 1)!

)
xn+1;

since x approaches 0, we can leave the second term out and we get

lim
x→0−

(
f (n)(0)

n!
− g(n)(0)

n!

)
xn = 0−.

We conclude that limx→0− [f(x)− g(x)] = 0−, then when x approaches 0−, f(x) < g(x).
For the same reasons limx→0+ [f(x)− g(x)] = 0+, then when x approaches 0−, f(x) > g(x).
It is easy to prove that if n is even then limx→0− [f(x)−g(x)] = 0+ and limx→0+ [f(x)−g(x)] =

0+. Therefore when x approaches 0−, f(x) > g(x) and when x approaches 0+, f(x) > g(x).
This shows the other implication.

Example 3.1.1. In the following �gure you can see the behavior of the two curves γ3 : x2 + y2 −
2y + x3 = 0 (in red) and Cγ362 + y2 − 2y = 0 , its osculating circumference in the origin (in blue).
As you can see γ3 < Cγ3 for x < 0 and γ3 > Cγ3 for x > 0.

So the origin is a crossing point of γ3 and Cγ3 . �

Example 3.1.2. In the following �gure you can see the behavior of the two curves γ4 : x2 + y2 −
2y+ x4 = 0 (in red) and C2γ4 + y2 − 2y = 0 , its osculating circumference in the origin (in blue). As
you can see γ4 > Cγ4 for x < 0 and γ4 > Cγ4 for x > 0.

So the origin is not a crossing point of γ4 and Cγ4 . �
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4 Osculating circumference of a conic section

In order to �nd the osculating circumference of a conic section we can use the two following

methods that do not involve the concept of derivative but are based on the use of Euclidean

geometry properties.

4.1 The �rst method

The �rst method consists in �nding the osculating circumference among the conics that belong

to a pencil of conics. Two conics C, C′ determine a pencil of conics passing through the four

common points of C, C′. There are four di�erent types of pencils of conics that pass through four

points:

We need to �nd the fourth type, that is the one in which the three points M , N and P
concide so that the conics of the pencil are osculating in that point, by Theorem 1.0.5.

It is possibile to prove that the equation of this pencil is the sum between the equation of the

given non-degenerate conic and the degenerate conic given by the product between the tangent

to the conic in the tangency point and a straight line passing through that point. Among all the

conics of this pencil we want to �nd the circumference therefore we impose that the coe�cients

of x2 and y2 must be equal and the coe�cient of xy must be null.

Let's consider a conic whose equation is p(x, y) = 0, one of its points A(x0; y0), the equation
t(x, y) = 0 of the tangent line to the conic in A and the equation a(x− x0) + b(y − y0) = 0 of a

generic straight line passing through A, then the equation of the pencil is

p(x, y) + t(x, y) · [a(x− x0) + b(y − y0)] = 0.
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This equation is equivalent to a parametric quadratic equation in x, y with a and b real

numbers. By imposing the previously mentioned conditions on the coe�cients of x2, y2 and xy
we �nd the osculating circumference.

Example 4.1.1. Let E be the ellipse of equation 5x2 + 9y2 − 81 = 0 and A(3; 2) one of its points,
we can �nd the equation t : 5x+ 6y−27 = 0 of the tangent line to E in A and we consider the pencil
of lines γ : a(x− 3) + b(y − 2) = 0 passing through A with a, b real numbers.
The equation of the pencil of conics Γ is

(5x2 + 9y2 − 81) + (5x+ 6y − 27) · [a(x− 3) + b(y − 2)] = 0,

that is

(5a+ 5)x2 + (6b+ 9)y2 + (6a+ 5b)xy + (−42a− 10b)x+ (−18a− 39b)y + 81a+ 54b− 81 = 0.

We want to �nd the circumference that belongs to this pencil and in order to do so we solve this
system: {

5a+ 5 = 6b+ 9

6a+ 5b = 0
,

and its solution is a =
20

61
, b = −24

61
.

Therefore, by substituting, the equation of the osculating circumference is

x2 + y2 − 40

27
x+

64

45
y − 57

5
= 0.

�

This method makes it possibile to �nd the osculating circumference without introducing the

concept of derivative but it works only for the osculating circumference of a conic.

4.2 The second method

The second method is a graphic method because it lets us draw the osculating circumference

without knowing its equation, through the ruler and the compass construction that is the con-

sutruction of geometric �gures using only an idealized ruler and compass as the ancient Greek

mathematician used to do.
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Theorem 4.2.1. Given a non-degenerate conic P and one of its points P , let t be the tangent

line to P in P . All the circumferences tangent to t in P that intersect the conic determine chord

parallel to each other.

Proof. In this proof we are going to consider the point P coincident with O(0; 0) and the line t
such that its equation is y = 0 without loss of generality. Let's consider the equation of a conic:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

with A,B,C,D,E, F ∈ R.
We do not consider the case A = C ∧ B = 0 because we obtain a circumference, which is not

interesting.

By hypothesis P (0; 0) must belong to the conic so F must be equal to 0. Moreover the line

t is tangent to the conic in the point P . Then we consider the system:{
Ax2 +Bxy + Cy2 +Dx+ Ey = 0

y = 0
.

We impose that the discriminant of the quadratic equation Ax2 +Dx = 0 is equal to zero.

∆ = D2 = 0 =⇒ D = 0;

therefore the equation of the conic is

Ax2 +Bxy + Cy2 + Ey = 0; (10)

Then we intersect the conic with a circumference tangent to t in P (0; 0), i.e. we solve the system
composed by the equation (10) and the pencil whose equation is x2 + y2 + ky = 0 with k ∈ R:{

Ax2 +Bxy + Cy2 + Ey = 0

x2 + y2 + ky = 0
.

The system has four R2-solutions at most, and two of them coinciding with P .
In order to �nd the other two possible solutions we solve the system by using the Gaussian

elimination and we got the following system:{
Bx+ (C −A)y + E −Ak = 0

x2 + y2 + ky = 0
.

In the case A 6= C ∧ B = 0 we will have horizontals chords, while if A = C ∧ B 6= 0 we will

have vertical chords, no matter what k is. In the general case A 6= C ∧B 6= 0, we can write the

system as 
x =

A− C
B

y +
Ak − E
B[

A− C
B

y +
Ak − E
B

]2

+ y2 + ky = 0
.

Let I1(x1; y1), I2(x2; y2) the two distinct intersection points bewteen the conic and the cir-

cumference that do not coincide with P . Then it follows that{
y = y1

x1 = A−C
B y1 + Ak−E

B

∨

{
y = y2

x2 = A−C
B y2 + Ak−E

B

.
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We recall that the slope m of a straight line is given by m = ∆y
∆x ; therefore the slope of the

secant line which is the in�nite extension of the chord that joins I1 and I2 is

y2 − y1

x2 − x1
=

B

A− C
.

Since the slope of this line depends only on the coe�cients of the equation of the conic, it is

always the same no matter what the k is. In this way it is proved that the chords determined by

the intersection points between a conics and a circumference are always parallel to each other.

Thanks to Theorem 4.2.1 it is possibile to �nd the osculating circumference of all the conics

in one of its points. Let's consider for instance an ellipse E and P ∈ E . We draw the tangent

line t to E in P and a circumference such that t is tangent to the circumference in P . The

circumference intersects the ellipse in other two points R and S.

All the circumferences tangent to the line t in P intersect the ellipse in two points that make a

chord: according to Theorem 4.2.1 all these chords are parallel. So we draw a line parallel to the

chord RS passing through P that intersects the ellipse in a point Q.
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The smaller circumference tangent to t in P intersects E only in Q so the three other points

of intersection between the circumference and the ellipse are all coincidents to P . Therefore

by Theorem ?? the circumference tangent to t in P that intersects E in Q is the osculating

circumference of the ellipse. In order to draw the osculating circumference we draw the axis of

the chord QP and the intersection point between this axis and the normal to E in P is the centre

of the osculating circumference.

Theorem 4.2.2. Given a non-degenerate conic P and one of its points P , let t be the tangent

line to P in P and let t′ be the symmetrical line to t about one of the axes of the conic2. The

line t′ is parallel to the chords determined by the intersection points between the conic and the

circumferences tangent to t in P .

Proof. In this proof we are going to consider the point P coincident with O(0; 0) and the line t
such that its equation is y = 0, without loss of generality. As we did in the previous proof, we

intersect the conic with a circumference tangent to t in P (0; 0) whose equation is x2+y2+ky = 0.
This leads to the following systemx =

A− C
B

y +
Ak − E
B

[(A− C)2 +B2] y2 + [2(A− C)(Ak − E) +B2k] y + (Ak − E)2 = 0
.

In the case in which the second equation has only one solution, there is just an intersection point

whose coordinates are

P ′
(
B[Ak + Ck − 2E]

2[(A− C)2 +B2]
;−2(A− C)(Ak − E) +B2k

2[(A− C)2 +B2]

)
;

2One of the two axes, in the case of an ellipse or a hyperbola, the only one in the case of a parabola.
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this point is symmetrical to P about one of the axes of the conic for both the circumference and

the conic, so the tangent line to the conic in P ′ will be symmetrical to t about the axis, and we

will call this line t′.
We know that the slope of a tangent line to a conic of equation Ax2 +Bxy+Cy2 +E = 0 in a

point (x0; y0) is given by its derivative function, that can be obtained by implicit di�erentiation.

m = − 2Ax+By

Bx+ 2Cy + E
.

Therefore by substituting the coordinates of P ′ we got that the tangent line t′ has slope

mt′ =
B

A− C
,

which is exactly the slope of the extension line of the chords determined by the intersection point

between the conic and the osculating circumference of the conic in the point P .

It is possibile to de�ne another version of this method that does not involve any circumference

but allows us to immediately build the osculating circumference.

Let's consider for instance an ellipse E , one of its points P and the tangent line t to E in P .
We call P ′ the symmetrical point of P about one of the axes of E and t′ the tangent line to E in

P ′.

By Theorem 4.2.2 the line t′ is parallel to all the chords determined by the intersection points

between the ellipse and the circumferences tangent to t in P . So we draw the parallel line to t′

passing through P that intersects E in Q and we proceed exactly as in the previous case. The

tangent circumference to t in P passing through Q is the osculating circumference of the ellipse

in the point P .
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