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Presentation of the research topic:

This year the Math.en.jeans workshop proposed to work with egyp-
tian fractions. Egyptians used only fractions like 1

n such that n ∈ N0

and did not know negative fractions. These fractions will be called
unitary fractions or unit fractions. We want to write proper irriducible
fractions a

b , such that a and b are non-zero natural numbers, as a sum
of distinct unit fractions. This sum is called egyptian fraction.
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Brief presentation of the conjectures and results obtained:

The aims of this article are to verify if we can always write a proper irriducible fraction a
b as

an egyptian fraction; to verify if there are different and eventually infinite possible expansions;
to explore different ways to expand a proper fraction, comparing various methods in order to
understand if there is a preferable one, depending on the results they lead to.

We studied Fibonacci’s method, Golomb’s method and a method based on practical numbers,
retracing the original proofs, introducing new results and proposing some variants to the methods.
Most importantly, we observed that through Fibonacci’s algorithm every proper fraction can be
expand into egyptian fractions, and the ways to do that are infinite in number.

We proposed a new original method based on a geometric approach to the problem.
We studied the tree composed of the unitary fractions that expand a given proper fraction,

designing a function that allows to determine the terms of the tree.
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Introduction

Egyptian people used fractions as
1

n
with n ∈ N0 (we denote the set of non-zero natural numbers

by N0). These fractions will be called ”unit fractions” (from now on we will call them U.F.).
Instead of proper fractions, egyptians used to write them as a sum of distinct U.F. So every time
they wanted to express a fractional quantity, they used a sum of U.F., each of them different from
the others in the sum. This expansion of a proper fraction is called ”egyptian fraction”.

For example, the fraction
3

4
as a egyptian fraction will not be

1

4
+

1

4
+

1

4
, but will be

1

2
+

1

4
.

The first question someone could think would be: why did they use this particular method?
Even if there are many hypothesis, none of them is ascertained. The most accredited of them
is that they used U.F. to simplify practical suddivisions. Matematically, for us is easier thinking
about Proper fractions, but on a concrete level, it is more simple operating with unitary parts of a
whole. On a document named ”Rhind Papyrus” of Ahmes (one of the oldest known mathematical
manuscripts, dating from around 1650 B.C.) are listed in a table the expansions of every proper
fractions with 2 as numerator and from 3 to 101 as denominator. This is one of the most important
examples of Egyptian mathematics and represents the base of egyptian fractions.

There are various explanations as to why the Egyptians chose to use such representations but
perhaps the most compelling is the one given in the book ”The Man Who Loved Only Numbers”
by the legendary mathematician André Weil:

He thought for a moment and then said: It is easy to explain. They took a wrong turn!

[11]

Initially we asked ourselves some questions.
Can we write every proper fraction as a sum of unit fractions?
Are there different methods to decompose a proper fraction?
Are there different types of decomposition?
Are there infinite expansions for each proper fraction?
Is there a best expansion? If so, would it be the shortest one or the one that leads to a sum

with the lowest denominators?
In the following chapters we will give some answers to these questions.

3



Contents

Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Fibonacci’s Method 5
1.1 The Greedy method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The value of k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Number of unit fractions componing the sum . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The best method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Golomb’s method 10
2.1 Euclidean algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Method for egyptian fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method of practical numbers 15
3.1 Practical numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Non-practical numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Geometric method (our solution) 23
4.1 Egyptian fractions 1

x + 1
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Fractions sum
product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Fractions k·sum
k·product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Egyptian fractions 1
x + 1

y + 1
z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Egyptian fractions 1
x1

+ 1
x2

+ ...+ 1
xn

: a general method . . . . . . . . . . . . . . . . 29
4.6 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Comparison 33

6 The tree of fractions 35
6.1 The formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 The recursion of the formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 The need to operate differently with the unit fractions
1

n+ 1
and

1

n(n+ 1)
. . . . . 36

6.4 The symmetry of the tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 The non-symmetry in the second row of the tree . . . . . . . . . . . . . . . . . . . . 38
6.6 The expansion of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4



Chapter 1

Fibonacci’s Method

The first way we propose was given by Fibonacci, also known as Leonardo Pisano, in 1202. His
method is to apply the greedy algorithm which consists in subtracting the largest possible U.F.
from the fraction so that the result is non-negative. We have to repeat this on the remainder until
we find a fraction that is itself a U.F. not equal to one already written down.

The denominator is at most squared each step, so the largest denominator is at most y2
x

or
more generally y2

k
where k is the number of terms.

1.1 The Greedy method.

We can note that:

Theorem 1.1.1. Subtracting the largest possible unit fraction that keeps a positive difference from

a proper irriducible fraction
a

b
, that is, such that

a

b
− 1

k
> 0, the resulting fraction numerator is

strictly less than the one of the initial fraction and the resulting fraction denominator is strictly
greater than the one of the initial fraction.

Proof. Chosen a non-zero natural number k, it must also be different from one. Indeed, if we

subtract from the proper fraction
a

b
the U.F.

1

1
(so with k = 1), the result will be negative. If

k ≥ 2 the difference between a proper fraction and a U.F. is:

a

b
− 1

k
=
ka− b
bk

⇒ a

b
=

1

k
+
ka− b
bk

Since
1

k
is the largest unit fraction that we can subtract from

a

b
, then

1

k − 1
>
a

b

then multiplying both sides by b we have

b

k − 1
> a

and now
b > a(k − 1) ⇒ ka− b < a

Since k ≥ 2 the denominators of the fractions must be strictly increasing.
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Theorem 1.1.2. Given an irriducible proper fraction
a

b
, the Fibonacci algorithm produce an ex-

pansion with at most a number of distinct unit fractions equal to the numerator (a).

Proof. The previous theorem states that ka−b < a, ka−b > 0 and ka−b ∈ N. Then the numerator

strictly decreases after each step therefore the number of terms in the representation of
a

b
is at most

a.
At last, the only way this method could go wrong would be if two of the fractions were equal

(infact this is not allowed in Egyptian fractions). But this can’t happen because if we had two

successive terms
1

n
and

1

m
with n = m, we could have chosen

1

n− 1
instead of

1

n
.

Infact
1

n
+

1

n
>

1

n− 1
since n > 2.

Answer: The Fibonacci’s Method guarantees that every proper fraction can be expand into a
infinte number of dinstinct unit fractions.

1.2 The value of k

Operatively we can use this result:

Theorem 1.2.1. Given a irriducible proper fraction
a

b
, holds

a

b
=

1

k
+
A

B
with k =

⌈
b

a

⌉
and A < a

.

Proof. Assuming that:
a

b
− 1

k
> 0⇒ 1

k
<
a

b
⇒ k >

b

a

where k is the lowest denominator before
a

b
− 1

k
is less than 0.

From the theorem 1.1.1 holds A < a.

Example: Let’s a proper fraction
a

b
where a is 791 and b is 3517.

So, if we want to find k, we have to divide 3517 for 791. In this case the result of
3517

791
is

4, 4462705... So, k will be 5 because it is

⌈
b

a

⌉
. In symbols:

a

b
− 1

k
> 0⇒ 791

3517
− 1

5
> 0.

Therefore
3517

791
=

1

5
+

384

17855
where 384 < 791.

1.3 Number of unit fractions componing the sum

Fibonacci observed that it is possible to expand a irriducible proper fractions into a finite number
of unit fractions exactly by at most a number of addends equal to the value of initial numerator.

Now that we have established a way (of course that’s not the only one) to define k , we are
going to show how to discover the minimal number of U.F. the initial one can be expanded. By
the way, we will start with the lowest number of scompositions, which is, of course, 2 (we are not
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going to consider 1 because it refers to a proper fraction which already is unit). As a consequence
we can say that:

a

b
− 1

k
=

1

p
.

As you can see, we have introduced a new variable, p.
We assume that p ∈ N0 and now we have to find p using the other variables. Starting from the

previous equation, we come to:

ak − b
bk

=
1

p
⇒ p =

bk

ak − b

so we can easily find the value of p if it is a natural number.

But this isn’t the only egyptian fraction the proper fraction can be expanded. In fact, there are
infinite ways to come to that proper fraction summing U.F. Indeed, we can break down not only
fractions with numerator greater than 1, but we can expand unit fractions, too.

Theorem 1.3.1. For all x ∈ N0 holds:

1

x
=

1

x+ 1
+

1

x(x+ 1)

Proof. If we have the difference:
1

x
− 1

y
where x and y are non-zero natural numbers, the result will

be
y − x
xy

. To guarantee that this difference is a U.F. we impose that y − x = 1, so that y = x+ 1.

As a consequence we can say that subtracting to a U.F. another U.F. which is strictly lesser than
it, the result will be a U.F., too. The formula is:

1

x
− 1

y
=
y − x
xy

=⇒ 1

x
=

1

x+ 1
+

1

x(x+ 1)

Thanks to this, we can prove that a proper fraction can be edxpand into unit fractions using
an infinite number of ways.

Example: Chosen a proper fraction
3

5
, using the Fibonacci’s method, we have to calculate the

value of k =

⌈
5

3

⌉
= 2. By subtracting from the proper fraction the U.F.

1

k
we come to:

3

5
=

1

2
+

1

10

But now, with identity above, we can break down every single addend into other unit fractions an
so on.

Example:
1

2
=

1

2 + 1
+

1

2 · (2 + 1)
=

1

3
+

1

6

1

10
=

1

10 + 1
+

1

10 · (10 + 1)
=

1

11
+

1

110

So
3

5
=

1

3
+

1

6
+

1

11
+

1

110
.
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The requirement to request distinct fractions does not increase the number of fractions. Infact,
for n odd we can use the identity

1

n
+

1

n
=

2

n+ 1
+

2

n(n+ 1)

for n even instead

1

n
+

1

n
=

2

n

Now we can expand every U.F. into other unit fractions.

Answer: There are infinite sums of distinct unit fractions that expand a irriducible proper
fraction.

1.4 The best method

Fibonacci found an algorithm, as we have already said, which is based on the greedy procedure, in
which the largest possible unit fraction is chosen for each term of the expansion.

Let’s take an example fraction, such as
3

7
, his greedy expansion will be:

3

7
=

1

3
+

1

11
+

1

231

However, it can be also written as

3

7
=

1

6
+

1

7
+

1

14
+

1

21

As we can see, it has more terms, but the highest denominator of this expansion is lower than the
Fibonacci one (231 vs 21).

Alternatively, we can write
3

7
as

3

7
=

1

4
+

1

7
+

1

28

which has three terms, like the greedy procedure, and 28 as the highest denominator, which is lower
than 231.

As a consequence, the Fibonacci’s algorithm is not the best method to find a expansion that
generates the lowest denominators.

On the other hand, we have to discover if it is, or not, the shortest.

Chosen a random fraction
4

49
, with the greedy expansion it will be broken down into

4

49
=

1

13
+

1

213
+

1

67841
+

1

9204734721

but it can also be written
4

49
=

1

14
+

1

98

so we have easily prove that it is not neither the shortest.

Therefore the merits of this metod are:
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• It works with all proper fractions;

• It can break every proper fraction into an egyptian fraction.

But its limits are:

• The denominator of the resulting fractions the denominators can grow quite huge;

• It’s not always the shortest expansion.
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Chapter 2

Golomb’s method

There is an algorithm due to Solomon Wolf Golomb, American mathematician, we can use in order
to expand an irriducible proper fraction into unit fractions.

Given a proper fraction
a

b
, there exist two non-zero natural number A and B such as aA = bB+1

then

a

b
=
aA

bA
=
bB

bA
+

1

bA
=
B

A
+

1

bA

Now since aA = bB + 1 and a < b then aA > bB > aB, that 0 <
B

A
< 1, and we can apply the

above procedure for
B

A
(we can suppose that gcd(A,B) = 1).

On the other hand, we have aA > bB > AB, hence B < a, which guarantees the finiteness of
the method.

Example:

Given a = 3, b = 7 that is
a

b
=

3

7
. We can find that 3A = 7B + 1 with A = 5, B = 2. So

a

b
=

1

bA
+
B

A
⇒ 3

7
=

1

35
+

2

5

Now we have to continue with the fraction
B

A
=

2

5
. So, we can find that 2C = 5D + 1 with

C = 3, D = 1. So

B

A
=

1

AC
+
D

C
⇒ 2

5
=

1

15
+

1

3

Therefore

a

b
=

1

bA
+
B

A
=

1

bA
+

1

AC
+
D

C
⇒ 3

7
=

1

35
+

2

5
=

1

35
+

1

15
+

1

3

Now the problem is to find the numbers A and B. The methods that we will use is based on
the theorem of Bezout:

Theorem 2.0.1. (Bezout). For non-zero a and b in Z, there are x and y in Z, such that

gcd(a, b) = ax+ by

In particular, when a and b are relatively prime, there are x and y in Z such that ax+ by = 1.
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The Equation gcd(a, b) = ax+ by is called Bezout’s identity.

Since we can suppose that
a

b
is a fraction in lowest terms then gcd(a, b) = 1. Therefore there

are A and B in Z such that aA + bB = 1. Whereas a, b > 0 necessarily A and B can’t be both
positive. We would like B < 0, infact for the Gaolomb’s method we use the theorem:

Theorem 2.0.2. Let a < b be positive integers with a 6= 1 and with gcd(a, b) = 1, and consider the

fraction 0 <
a

b
< 1 then there exist a natural number 0 < A < b and a natural number B such that

aA = bB + 1

Proof. The theorem of Bezout says that there exist x and y such that gcd(a, b) = ax + by, but
does not say that they are unique. It is possible to prove that exist infinite couples of integer that
satisfy the Bezout’s identity.

Infact, if x and y is one pair of Bezout coefficients then also all pairs(
x− k b

gcd(a, b)
, y + k

a

gcd(a, b)

)
, with k ∈ Z

satisfy the same identity.
Infact if (x, y) is a solution pair of the equation and d = gcd(a, b) then

a

(
x− k b

d

)
+ b

(
y + k

a

d

)
= ax− ak b

d
+ by + bk

a

d
= ax+ by = d.

We would like A > 0, B < 0 and A < b. But if we do not find such numbers we can choose
a k such that makes A − kb > 0, B + ka < 0 and A − kb < b. We want prove that such number
exist. Let a, b ∈ N with a < b and A,B ∈ Z such that aA + bB = 1 and A · B < 0, we can find

A′ = A− kb and B′ = B + ka such that A′ > 0, B′ < 0 and A′ < b.

We have to take k ∈ Z such that
A

b
− 1 < k < −B

a
.

Infact if k < −B
a

then

A′ = A− kb > A+
B

a
b =

aA+ bB

a
=

1

a
> 0

and

B′ = B + ka < B − B

a
a = B −B = 0

and if k >
A

b
− 1 then

A′ = A− kb < A+ b

(
1− A

b

)
= A+ b−A = b

The last question is:
Is there such integer number? That is we have to prove now. Let a, b ∈ N with a < b and

A,B ∈ Z such that aA+ bB = 1 and A ·B < 0,

∃k ∈ Z :
A

b
− 1 < k < −B

a
.

A number with these properties exists and it is k =

⌊
A

b

⌋
11



retta.jpg

where bxc is the floor function that is the function that takes as input a real number x and
gives as output the greatest integer that is less than or equal to x.

It is clear from the definitions that bxc ≤ x < bxc+ 1, then
A

b
− 1 <

⌊
A

b

⌋
.

But the following inequality holds too:

⌊
A

b

⌋
< −B

a
.

Infact,
A

b
>

⌊
A

b

⌋
>⇒ A > b

⌊
A

b

⌋
. Since A and b

⌊
A

b

⌋
are integer numbers, then A ≥ b

⌊
A

b

⌋
+1

then

A

b
−
⌊
A

b

⌋
≥
b

⌊
A

b

⌋
+ 1

b
−
⌊
A

b

⌋
=

⌊
A

b

⌋
+

1

b
−
⌊
A

b

⌋
=

1

b
>

1

ab
=
aA+ bB

ab
=
A

b
+
B

a

Therefore
A

b
−
⌊
A

b

⌋
>
A

b
+
B

a
⇒
⌊
A

b

⌋
< −B

a

.

Therefore
a

b
=
B

A
+

1

bA
with 0 < A < b then A ≤ b− 1 and so bA ≤ b(b− 1).

We can repeat the argument for each following step, infact at each i-th step Ai < Ai−1 and so
Ai ·Ai−1 ≤ b(b− 1).

Then the algorithm gives distinct unit fractions which have denominators at most b(b− 1).

The problem now is to find an algorithm to find the numbers A and B. The answer is: with
the Euclidean algorithm.

2.1 Euclidean algorithm

A constructive method for obtaining Bezout’s identity is to use the extended Euclidean algorithm.
The Euclidean algorithm, or Euclid’s algorithm, is an efficient method for computing the greatest
common divisor (gcd) of two numbers, the largest number that divides both of them without leaving
a remainder.

Theorem 2.1.1. Given two non-zero natural numbers a and b with a < b, we divide
b

a
and assign

the remainder of the division to r. If r = 0 then a= gcd(a,b) otherwise we assign a = b and b = r
and repeat the division again.

The Euclidean algorithm is basically a continual repetition of the division algorithm for integers.
The point is to repeatedly divide the divisor by the remainder until the remainder is 0. The gcd is
the last non-zero remainder in this algorithm. Keeping in mind the quotients obtained during the
algorithm development, two integers p and q can be determined such that ap + bq = gcd(a, b).
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2.2 Method for egyptian fraction

Let’s consider the proper fraction
a

b
:

(1) Find A e B of the Bezout’s Identity using the Euclidean algorithm then aA+ bB = 1;

(2) If 0 < A < b and B < 0 then go to the next step;

else we calculate A′ = A − kb and B′ = B + ka with k =

⌊
A

b

⌋
and, for the theorem 2.0.2

with get 0 < A′ < b and B′ < 0 and now go to the next step;

(3) Use the Golomb’s method

Example:

Let’s consider the fraction
a

b
=

38

121

(1) We find two numbers A and B with the Euclidean algorithm:

121 = 38 · 3 + 7

38 = 7 · 5 + 3

7 = 3 · 2 + 1

3 = 1 · 3 + 0

Let’s start with the second to last identity and we substitute in it the number made explicit
in the immediately preceding equation, we grouping the common factors and we continue
to substitute the rest of the previous equation (proceeding from bottom to top) until an
expression is obtained in the numbers A and B.

1 = 7− 3 · 2
1 = 7− (38− 7 · 5) · 2
1 = (121− 38 · 3)− {[38− (121− 38 · 3) · 5] · 2}
1 = 121 · 11 + 38 · (−35)

At the end 38A+ 121B = 1 ⇒ A = −35, B = 11

(2) However A and B do not respect the desired conditions then we have to calculate

k =

⌊
A

b

⌋
=

⌊
−35

121

⌋
= b−0.2c = −1

Therefore

A′ = A− kb = 86 and B′ = B + ka = −27 ⇒ A′ > 0, B′ < 0, A′ < b

13



(3) Now 38 · 86 + (−27) · 121 = 1 then 38 · 86 = 27 · 121 + 1 and we can use the Golomb’s method:

38

121
=

38 · 86

121 · 86
=

27 · 121 + 1

121 · 86
=

27

86
+

1

121 · 86
=

27

86
+

1

10406

You have to repeat the same procedure until the proper fraction
a

b
will be expand as the sum

of unit fractions (egyptian fraction).

2.3 Observations

The Golomb’s algorithm is better than the Fibonacci-Sylvester algorithm in the sense that the in
this case the denominators are guaranteed to be less than b(b− 1).

The denominators of Golomb are not always greater than the denominators of Fibonacci, some-
times the opposite can happen, but while for Golomb there is a bound for the denominators, in the
method of Fibonacci the denominators can grow quite huge.
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Chapter 3

Method of practical numbers

For creating a unit fraction expansion of a proper irriducible fraction
a

b
we noted that if a can be

written as the sum of divisors of b, then we can easly reach our goal and, in particolar,
a

b
can be

expanded with no denominator greater than b itself.
Therefore to expand a given fraction with the numerator that can be expressed as a sum of

denominator divisors as sum of egyptian fractions, we express
a

b
as sum of fractions with numerator

a divisor of b over b.
For example:

a

b
=

7

12
D12 = {1, 2, 3, 4, 6, 12}

And so
7

12
can be expressed as sum of:

7

12
=

1

12
+

2

12
+

4

12
;

7

12
=

3

12
+

4

12
;

7

12
=

1

12
+

6

12

And simplifying all the equations we obtain sums of egyptian fraction:

7

12
=

1

12
+

1

6
+

1

3
;

7

12
=

1

4
+

1

3
;

7

12
=

1

12
+

1

2

If the denominator of an irriducible fraction proper is a practical number then this technique
allows to expand all the proper fractions with that denominator.

3.1 Practical numbers

Definition 3.1.1. A practical number is a natural number N such that for all n < N , n ∈ N0 then
n can be written as the sum of distinct divisors of N .

Hence we thought to divide the set of natural numbers N into two subsets: the set of practical
numbers and the set of not practical numbers.

We wondered however if this division of N is useful, because we don’t know how many practical
numbers there are. It is possible to prove that the first practical number are 1, 2, 4, 6, 8, 12, 16,
18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54... but the question is: how many?

We will prove they are infinite and in order to do this we follow the proof for the prime numbers
offered by Euclide and published in his work Elements (Book IX, Proposition 20).
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Theorem 3.1.2. (Euclide’s Theorem) Prime numbers are more than any assigned multitude of
prime numbers.

Proof. Let’s assume that p1, p2, ..., pn is any finite list of prime numbers. We want to show that
there is one additional prime number that is not in this list. Let P be the product of all the prime
numbers in the list, that is P = p1 · p2 · ... · pn and let q = P + 1.

• If q is a prime number, then there is at least one more prime that is not in the list.

• If q is not a prime number, then there is a prime factor p that divides q. So p divides q
and also P then p would divide the difference of the two numbers, wich is 1. Since no prime
number divides 1, p cannot be on the list. This mean that at least one more prime number
exist beyond those in the list.

This proves that for every finite list of prime numbers there is a prime number not on the list.

This Theorem states that the set of prime numbers is infinite.
Also the pratical numebers are infinity, to prove this we have to introduce one the following

theorem:

Theorem 3.1.3. The product of two practical numbers is a practical number.

Proof. Given p1 and p2 practial numbers with p1 < p2,

• if n ∈ N and n < p1 we can write n as a sum of divisors of p1 but the divisors of p1 are also
divisors of p1 · p2 therefore n is sum of divisiors of p1 · p2;

• if n ∈ N and 1 ≤ n < p2 since p2 practical, then n is sum of divisors of p2 that is n =∑
di∈Dp2

di with Dp2 the set of divisors of p2 then p1n =
∑

di∈Dp2
p1di but all the p1di are

divisors of p1p2 since the products between p1 and a divisor of p2 are divisors of p1p2 (di
divide p2). Therefore all the p1n can be written as a sum of divisors of p1p2.

• if n ∈ N and n is between two p1n consecutive p1n1 and p1n2 then it can be written as
n = pin1 +

∑
δi∈Dp1

δi. Since both the adds can be written as sun of divisors of p1p2 then

also n is a sum of divisors of p1p2.

Therefore each n less then p1p2 is a sum of divisors of p1p2 then p1p2 is practical.

Basing on the Theorem 3.1.3 and following the proof of Euclide’s Theorem we can states this
theorem:

Theorem 3.1.4. Practical numbers are more than any assigned multitude of practical numbers.

Proof. Consider any finite list of practical numbers p1, p2, ..., pn. It will be pointed out that there is
at least one more practical number that is not on the list. Called P the product of all the practical
number on the list P = p1 · p2 · ... · pn. P is practical for the Theorem 3.1.3, and P is different from
all the practical numbers in the list.

Therefore there is one more practical number that is not in the list. This proves that for every
finite list of practical numbers there is a practical number not on the list

Hence the set of pratical numbers is infinite:
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Definition 3.1.5. A set A is said to be finite, if A is empty or there is n ∈ N and there is a
bijection f : {1, ..., n} → A. Otherwise the set A is called infinite.

Definition 3.1.6. Two sets A and B are equinumerous or of the same cardinality if there exists a
bijection f : A→ B. We then write A ∼ B or |A| = |B|.

Definition 3.1.7. A set A is called countably infinite if |A| = |N|. A is countable if it is finite or
countably infinite. If it is not countable it is uncountable.

Theorem 3.1.8. Every infinite subset of N is countably infinite.

Theorem 3.1.9. If A is a infinity subset of N then A is countable.

Theorem 3.1.10. The subset of N of practical numbers is infinite.

Theorem 3.1.11. The subset of N of practical numbers is countably infinite set i.e. with the same
cardinality of N (ℵ0).

We can conclude the pratical numbers are as many as the natural numbers and then a reasonable
number for divide the set N and to use this method to expand a fraction.

The problem now is if the denominator is a not practical number.

3.2 Non-practical numbers

If the denominator b of the fraction is not a practical number we need, if it exists, a natural number
k such that bk is a practical number.

We need these theorems:

Theorem 3.2.1. The product of the first prime numbers is a practical number.

Proof. We use the induction technique:
Base case is with n = 2 and is true because 2 is a practical number.
Inductive step: we show that if p = 2 · 3 · ... · pn is practial then pT = 2 · 3 · ... · pn · pn+1 is also

practical.

• if n ∈ N and n ≤ p then is a sum of divisors of p for inductive hypothesis then is a sum of
divisors of pT (each disisors of p is divisors of pT ).

• if n is between two kp consecutive k1p and k2p then n = λ+ k1p with λ < p then λ is a sum
of divisors of pT and k1p = pn+1 · q + r with q < p and r < p then also q and r are sums of
divisors of pT .

pn+1 is prime then pn+1di, with di divisor of p, is a divisor of pT then pn+1q = pn+1(d1·...·dm =
pn+1d1 + ...+ pn+1dm is a sum of divisors of pT then kp is a sum of divisors of pT then n is a
sum of divisors of pT .

Therefore all the numbers less than pT are sum of divisors of pT then pT is practical.

Theorem 3.2.2. The product of a practical numbers by one of his divisor is a practical number.

Proof. Given p a practical number and d its divisor,
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• if n ∈ N and n < p then n is a sum of divisors of p then n is a sum of divisors of pd (if a
number divide p then divide pd),

• if n is between two kp consecutive k1p and k2p (k1, k2 < d) then n = k1p+ r with r < p then
r is a sum of divisors of pd for the point above.

d divide p then exists λ such as k1p = k1λd with k1λ < p then k1λ is a sum of divisors of p
then k1λ =

∑
dl∈Dp

dl then k1p =
∑

dl∈Dp
ddl. Since dl ∈ Dp ⇒ ddl ∈ Dpd (Dpd = Dp∪d ·Dp)

then for all l ddl ∈ Dpd then k1p is a sum of divisors of pd. Then n is a sum of divisors of pd.

Therefore all the numbers less than pd are sum of divisors of pd then pd is practical.

Theorem 3.2.3. The product of powers of the first prime numbers is a practical number.

Proof. This theorem is direct consequence of the theorems 3.2.1 and 3.2.2 indeed a product of
powers of the first prime numbers is the product of the of the first prime numbers times some its
divisors.

The previous theorems guarantee that there is a factor that makes the denominator a practical
number. We choose k equal to the product of the prime number in order to complete the list of
the first prime of the decomposition of b.

Example:
a

b
=

7

10
; b = 2 · 5

Now, the first prime number that do not appear in the expansion of b is 3 and so k = 3. So, to

have another equivalent fraction of the original one we have to multiply
a

b
for

k

k
and we get:

7

10
=

7

10
· 3

3
=

21

30

The fact that we obtain 30 that is a practical number, let us express
a

b
as sum of fractions with

numerator a divisor of 30 over 30.

3.3 Observations

Our method is not perfect. It guarantees the possibility of finding one expansion of the fraction
but we will not get all the existing expansions and it does not guarantee that it is the best, neither
the shortest nor the one with the smallest denominators.

Here it is an example: The starting fraction is
3

7
with 7, the denominator, that is not practical.

Example. Let the fraction
7

8
where 8 is practical. With our method we can expand

7

8
=

4 + 2 + 1

8
=

1

2
+

1

4
+

1

8

but we can multiply the denominator by 3 and we get an other different expansion:

7

8
=

21

24

12 + 8 + 1

24
=

1

2
+

1

3
+

1

24
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Example. Let the fraction
4

7
where 7 is not practical. Our method states that we have to

multiply the denominator by 2 · 3 · 5 = 30. In this case however we can multiply by 2. The
denominator becomes 14 that is not a practical number but the new numerator is sum of divisors
of 14 infact 8 = 1 + 7 so:

4

7
=

8

14
=

7 + 1

14
=

1

2
+

1

14

in order to find a practical denominator we have to multiply by 4 that is less than the number
proposed by our method.

Example.
Let us follow others different ways:

• Firstly we try our procedure.
3

7
=

3 · 30

7 · 30
=

90

210

90

210
=

1

3
+

1

14
+

1

42
;

90

210
=

1

3
+

1

15
+

1

35
;

• Now we find another coefficient that makes the denominator practical.

3

7
=

3 · 12

7 · 12
=

36

84

36

84
=

1

3
+

1

12
+

1

84
;

36

84
=

1

4
+

1

6
+

1

84
;

• And we do it again using another way.

3

7
=

3 · 33

7 · 33
=

99

231

99

231
=

1

3
+

1

11
+

1

231

We notice that in every procedure the factor k is different. The first is k = 30 and it is obtained
with our method, the second is k = 12 and is it lower than the first and the third is k = 33 that
is higher than the first one. So we can state that the possible expansions are connected with the
coefficient used.

So, we propose some different ways and we made a comparison with our method.

Theorem 3.3.1. (A. Galletti e K.P.S. Bhaskara Rao [6]). The factorial of a natural number n is
practical.

Basing of this theorem we can say that exists at least one coefficient k for every initial denom-
inator b, that multiplied for the given fraction let us get a practical denominator. Unfortunately
this method to find k has big disadvantage because it is true that it proof that exist at least one k
but does not care about the height of this number. For example, for our method we reach:

a

b
=

7

10
and k = 3

Instead, using this theorem k would be 9! (wich is 362.880), wich is much greater than b·k (7·3 = 30).
For this reason we prefer to use our method based on theorems 3.2.1, 3.2.2 and 3.2.3 instead of
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the theorem of A.Galletti and K.P.S Bahaskara Rao. Notice that we can proof that theorem 3.3.1
comes from our method to find k. In fact, for example:

9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2

9! = 27 · 34 · 5 · 7

So, a factorial number is the product of powers of the first prime numbers. For this reason it is a
practical number for theorem 3.2.3.

An other result:

Theorem 3.3.2. Let m be a practical number. If n is a integer such that 1 ≤ n ≤ σ(m) + 1, then
mn is a practical number, where σ(m) denotes the sum of the positive divisors of m. In particular
for 1 ≤ n ≤ 2m, mn is practical.

This result becomes from Stewart paper [1], in particolar this theorem appears, for example, in
[9] and it is the main tools to construct practical numbers. The first assertion follows from Stewart’s
structure theorem. Since m − 1 is a sum of distinct divisors of m, we have m + (m − 1) ≤ σ(m)
then 2m ≤ σ(m) and therefore, if n ≤ 2m then n ≤ σ(m) ≤ σ(m) + 1. (B.M. Stewart, 1954); The
difference between this result to find k and our method is that the first one gave us the smallest
number that multiplied for the initial denominator get a practical number and the one that we use
does not do this. For example, using the same example wich we used befor, for our method:

a

b
=

7

10
and k = 3

and for B.M. Stewart method k would be the practical number greater than b
2 :

k >
b

2
⇒ k = 6

In conclusion none of this method give us all the expansion of a given irriducible propor fraction
and so our method, while it does not give us the minor possible k, is fine. Also our strategy is fine
because it has a great advantage: it always gives us at least a possible expansion.
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3.4 The algorithm

The algorithm was written in C++ language, we wrote it because we needed to simplify and make
faster every expansion of a given fraction into sum of egytian fractions. To make it happen the
most important thing is find all proper divisor of b, and then create a matrix wich dimensions are
n and 2n − 1 where n is the number of proper divisors of b. Here it is an example of this matrix:

d1 d2 d3 d4

1 → 0 0 0 1
2 → 0 0 1 0
3 → 0 0 1 1
4 → 0 1 0 0
5 → 0 1 0 1
6 → 0 1 1 0
7 → 0 1 1 1
8 → 1 0 0 0
9 → 1 0 0 1
10 → 1 0 1 0
11 → 1 0 1 1
12 → 1 1 0 0
13 → 1 1 0 1
14 → 1 1 1 0
15 → 1 1 1 1

Each coloumn of the matrix is a proper divisor of b starting from left with the smaller one, and
every row is a natural number starting from 1 until 2n−1 but written in binary code. For example
in the test matrix the last row corresponds to the natural number 15. Then with a loop, we check
for each row if the sum of only divisors whose cell is equal to 1, is equal to the numerator. If it is
true the program will print the expansion. Here there are many important pieces of our code

• the search of the prorper divisors of b

30 f o r ( i n t i =1; i<b ; i ++){
i f (b%i ==0){

32 div b [ n d iv b ]= i ;
n d iv b++;

34 cout<<i<<”, ” ;
}

36 }
cout<<endl ;
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• The creation of the matrix:

40 i n t q , k ;
i n t lung=pow(2 , n d iv b )−1;

42 shor t c a s i [ lung ] [ n d iv b ] ;
f o r ( i n t i =0; i<lung ; i ++){

44 q=i +1;
f o r ( i n t j=n div b −1; j>=0; j−−){

46 k=j ;
i f ( q==1){

48 c a s i [ i ] [ k ]=1;
whi l e (k>0){

50 k−−;
c a s i [ i ] [ k ]=0;

52 }
break ;

54 }
c a s i [ i ] [ j ]=q%2;

56 q=q /2 ;
}

58 }

• The expansion into egyptian fraction

60 f o r ( i n t i =0; i<=lung ; i ++){
f o r ( i n t j =0; j<n d iv b ; j ++){

62 i f ( c a s i [ i ] [ j ]==1){
somma+=div b [ j ] ; }

64 }
i f (somma==a ){

66 cout<<a<<”/”<<b<<” = ” ;
f o r ( i n t h=0; h<n d iv b ; h++){

68 i f ( c a s i [ i ] [ h]==1){
cout<<”1”<<”/”<<b/ div b [ h]<<” + ” ;

70 }
}

72 cout<<endl ; }
somma=0;

74 }
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Chapter 4

Geometric method (our solution)

We now present a graphic method to expand a given irreducible proper fraction.

4.1 Egyptian fractions 1
x + 1

y

We choose to first deal with those fractions that can be written as the sum of two distinct unit
fractions:

a

b
=

1

x
+

1

y

where a, b, x, y are non-zero natural numbers.

4.2 Fractions sum
product

Let’s consider a fraction
s

p
where s and p are such that s = n + m and p = x · y, with x and y

natural numbers.

We observe that the sum
1

x
+

1

y
is:

1

x
+

1

y
=
x+ y

xy
=
s

p

Example. Let
5

6
be the fraction we want to write as a sum of two unitary fractions. We notice

that
5 = 2 + 3 and 6 = 2 · 3

hence we have the case where
s

p
=

5

6
=

1

x
+

1

y
=

1

2
+

1

3
.

4.3 Fractions k·sum
k·product

Let’s consider the more general case of a fraction a
b where a and b are relatively prime, such that

a

b
=

1

x
+

1

y
=
ka

kb
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We want to find, if they exist as natural numbers, x and y satisfying the given condition, once
we have chosen a and b.

We can express the problem as a system of equations:{
x + y = ka

xy = kb
(4.1)

We decide to analise the problem from a geometric point of view, so that the two equations
correspond respectively to a sheaf of parallel straight lines and a sheaf of hyperbolas on the Cartesian
plane (x, y). The solutions are the intersection points between the two curves, with natural
coordinates.

We notice that the solutions are positioned along a curve. If we change the value of k we can
see that the curve moves.

At first it seems that in order to find the solution we have to consider all the values of k, that
are infinite, but we notice that actually we must consider only k > 0. If k is negative we obtain a
couple (x;y) of discordant numbers because the intersection points belong to the second and fourth
quadrant of the Cartesian plane, but we want x and y to be positive, because the Egyptians did
not know negative numbers so we decide not to accept this case.

Another thing that can be noticed is that the abscissa of the solution is never less than a cer-
tain value. In fact, we find out that the geometric locus of the intersection points between the line
x+ y = ka and the hyperbola xy = kb is a homographic function:

y =
bx

ax− b

and its asymptote is

x =
b

a

which is exactly the value such that x >
b

a
.

Furthermore, since the points of the geometric locus are symmetrical with respect to the axis

y = x we can consider just the range of the curve between the asymptote x =
b

a
and the intersection

point of the homographic function y =
bx

ax− b
with y = x, that has abscissa:
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x =
2b

a

which means:

b

a
< x <

2b

a

We can get to the same result by following an algebraic method, starting form the same system
of eqautions 4.1 {

x + y = ka

xy = kb

which gives the following equation:

x2 − kax+ kb = 0 (4.2)

From this equation we obtain the coordinates of the intersection points:(
ka−

√
k2a2 − 4kb

2
;
ka+

√
k2a2 − 4kb

2

)
(4.3)

Hence the geometric locus of the intersection points between x + y = ka and the hyperbola
xy = kb is:

y =
1

2

(
ax

ax− b
+

∣∣∣∣x(ax− 2b)

ax− b

∣∣∣∣)
But we must impose some conditions:

• k2a2 − 4kb > 0 (4.3) because of the square root (∆ ≥ 0) and because we want x 6= y. The

result is k >
4b

a2
(we don’t consider k < 0).

We already know that (4.2)

k =
x2

ax− b
so:

x2

ax− b
>

4b

a2

x >
b

a

• 2x − ka < 0 for 2x − ka = −
√
k2a2 − 4kb (4.3) must be coherent. The result is

k >
2x

a
.

We already know that (4.2)

k =
x2

ax− b
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so:
x2

ax− b
>

2x

a

ax2 − 2bx

ax− b
< 0

These conditions impose that:

b

a
< x <

2b

a

We notice that for these values the argument of the absolute value in the equation of the
geometric locus is always negative, hence the final equation of the geometric locus is:

y =
bx

ax− b
∧ b

a
< x <

2b

a

which is exactly the same relation that we found out using the geomtric method.

After finding the values x ∈ N0 of the geometric locus that satisfy the condition
b

a
< x <

2b

a
we need to check if the corresponding y is natural.

Theorem 4.3.1. Let
a

b
be an irriducible proper fraction, then it can be expanded as sum of two

distinct unit fractions
1

x
+

1

y
, with 0 < x < y, if

b

a
< x <

2b

a
∧ y =

bx

ax− b

Example: Let’s consider
a

b
=

5

18
that we want to write as

5

18
=

1

x
+

1

y
.

The integer numbers x such that
b

a
< x <

2b

a
that is

18

5
< x <

36

5
are:

• x = 4→ y =
bx

ax− b
= 36, acceptable

• x = 5→ y 6∈ N0

• x = 6→ y =
bx

ax− b
= 9, acceptable

• x = 7→ y 6∈ N0

So:
5

18
=

1

4
+

1

36
=

1

6
+

1

9
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4.4 Egyptian fractions 1
x + 1

y + 1
z

We tried to retrace an analogous procedure for the expansion of a fraction in a sum of three unit
fractions.

a

b
=

1

x
+

1

y
+

1

z
=
ka

kb

Again, we can express the problem as a system of equations:{
xy + xz + yz = ka

xyz = kb

Each equation represents a surface on the Cartesian space (x, y, z) that changes for different
values of k. From the system we determine the geometric locus of the solutions:

z =
bxy

axy − b(x+ y)
(4.4)

In this case we need some conditions on x, y, y to be able to solve the problem. We choose to

impose x < y < z, expand the fractions
a

b
starting from the greatest unitary fraction and following

a descending order. This choice does not exclude any solutions, since imposing a different order of
x, y, z wuold allow to find the same fractions in a different order, that is still acceptable thanks to
the commutative property of the addition.

From the geometric locus (4.4) if we
want x, y, z > 0 then:

axy − b(x+ y) > 0

⇒ y >
bx

ax− b
After, since the points of the first
quadrant are symmetrical with respect
to the y = x axis, we are allowed to
consider just the points that have x < y
and satisfy the previous condition.

We can express z in 4.4 as a function of
x and y and analise x < z:

bxy

axy − b(x+ y)
> x

ax2y − bx2 − 2bxy < 0

axy − bx− 2by < 0

⇒ y <
bx

ax− 2b
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Then we proceed analising y < z:

bxy

axy − b(x+ y)
> y

axy2 − by2 − 2bxy < 0

axy − by − 2bx < 0

⇒ y <
2bx

ax− b

Representing on the same Cartesian plane all the graphs that we obtained, we can notice that
the points (x,y) that satisfy all the conditions belong to a specific area, hence the corresponding
coordinates z are positioned in a specific region of the space.

The area of the points (x,y) that satisfy all the conditions is not limited, but we must consider
only the points with integer coordinates, therefore we are not considering an infinite number of
points.

The graph shows that:

b

a
< x <

3b

a
∧ bx

ax− b
< y <

2bx

ax− b
which means that for every natural value of x we have to check if a natural value of y exists

such that z is natural.

Theorem 4.4.1. Let
a

b
be a irriducible proper fraction, then it can be expanded as sum of three

distinct unit fractions
1

x
+

1

y
+

1

z
with 0 < x < y < z, if

b

a
< x <

3b

a
∧ bx

ax− b
< y <

2bx

ax− b
∧ z =

bxy

axy − b(x+ y)

Example:Let’s consider
a

b
=

4

5
that we want to write as

4

5
=

1

x
+

1

y
+

1

z
.

The integer numbers x such that
b

a
< x <

3b

a
that is

5

4
< x <

15

4
are:

• x = 2 −→ 10

3
< y <

20

3

→ y = 4→ z =
bxy

axy − b(x+ y)
= 20, acceptable

→ y = 5→ z =
bxy

axy − b(x+ y)
= 10, acceptable
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→ y = 6→ z 6∈ N0

• x = 3 −→ 15

7
< y <

30

7

→ y = 3→ z 6∈ N0 (not acceptable becausey = x)

→ y = 4→ z 6∈ N0

So:
4

5
=

1

2
+

1

4
+

1

20
=

1

2
+

1

5
+

1

10

4.5 Egyptian fractions 1
x1

+ 1
x2

+ ... + 1
xn

: a general method

We tried to generalise the same method for the expansion of a fraction in a sum of n unit fractions:

a

b
=

1

x1
+

1

x2
+ ...+

1

xn
=

n∑
i=1

1

xi
=
ka

kb

where the fractions are displaced in decreasing order (0 < x1 < x2 < ... < xn).
Again, we can express the problem as a system of equations that are represented by objects in

the n-dimentioned Cartesian space:{∑n
i=1

1
xi

(∏n
j=1 xj

)
= ka∏n

j=1 xj = kb
(4.5)

Hence:

xn =
b

a− b
∑n−1

i=1
1
xi

(4.6)

That we can see is coherently:

1

xn
=
a− b

∑n−1
i=1

1

xi
b

=
a

b
−
n−1∑
i=1

1

xi
(4.7)

We conclude that, similarly to what occurs for n = 2 and n = 3, in the most general case:

b

a
< x1 <

nb

a
∧ b

a− b( 1
x1

)
< x2 <

(n− 1)b

a− b( 1
x1

)
∧ ...

∧ b

a− b
(∑n−2

i=1
1
xi

) < xn−1 <
2b

a− b
(∑n−2

i=1
1
xi

)
therefore:

Theorem 4.5.1. Let
a

b
be a irriducible proper fraction, then it can be expanded as sum of n distinct

unit fractions
1

x1
+ ...+

1

xn
, with x0 < x1 < ... < xn, (x0 = 0), if, for j = 1, ...n− 1

max

{
xj−1,

b

a− b
∑j−1

i=1
1
xi

}
< xj <

(n+ 1− j)b
a− b

∑j−1
i=1

1
xi

∧ xn =
b

a− b
∑n−1

i=1
1
xi
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Proof. Given n numbers 0 < x1 < x2 < ... < xn−1 < xn, we proved above that

xn =
b

a− b
∑n−1

i=1
1
xi

Now, from xn−1 < xn then

xn−1 <
b

a− b
∑n−1

i=1
1
xi

⇒ axn−1 − bxn−1 ·
n−2∑
i=1

1

xi
− b < b

⇒

(
a− b

n−2∑
i=1

1

xi
)

)
xn−1 < 2b ⇒ xn−1 <

2b

a− b
∑n−2

i=1
1
xi

Now, from xn−2 < xn−1 then

xn−2 < xn−1 <
2b

a− b
∑n−2

i=1
1
xi

⇒ xn−2 <
2b

a− b
∑n−2

i=1
1
xi

and in the same way

xn−2 <
3b

a− b
∑n−3

i=1
1
xi

we continue in this way up x1, infact x1 < x2 <
(n−1)b
a−b( 1

x1
)

and so

x1 <
(n− 1)b

a− b( 1
x1

)
⇒ x1 <

nb

a

with this procedure it is possible to bound above all the variables.
Starting from xn > 0 we get

b

a− b
∑n−1

i=1
1
xi

> 0 ⇒
n−1∑
i=1

1

xi
<
a

b

⇒ 1

xn−1
<
a

b
−
n−2∑
i=1

1

xi
⇒ xn−1 >

b

a− b
∑n−2

i=1
1
xi

Now, xn−1 > 0 and

xn−1 <
2b

a− b
∑n−2

i=1
1
xi

⇒ 2b

a− b
∑n−2

i=1
1
xi

> 0

⇒
n−2∑
i=1

1

xi
<
a

b
⇒ xn−2 >

b

a− b
∑n−3

i=1
1
xi

continuing like this until x1 >
b

a
. Then all the variables are bounded below.

Therefore all the inequalities of the theorem are valid for all j = 1, ..n − 1 remembering that∑0
i=1

1
xi

is an empty sum, or nullary sum, that is a summation where the number of terms is zero.
By convention the value of any empty sum of numbers is the the neutral element of addition that
is zero.

We use the function max

{
xj−1,

b

a− b
∑j−1

i=1
1
xi

}
as the left bound in order to eliminate unac-

ceptable cases from the condition x1 < x2 < ... < xn.
Conventionally we indicate x0 = 0 to keep the correct formula correct for all indices j.
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Example: Let’s consider a
b = 3

4 that we want to write as 3
4 = 1

x1
+ 1

x2
+ 1

x3
+ 1

x4
which means

n = 3. Let’s proceed by:

• Calculating the range of possible x1 values as:

4

3
< x1 <

4 · 4
3

• Determining the possible integer values of x1 and calculating for each of them the possible
ranges of x2 values as:

4

3− 4
(

1
x1

) < x2 <
3 · 4

3− 4
(

1
x1

)
• Determining the possible integer values of x2 and calculating for each possible couple of x1,
x2 the possible range of x3 as (??):

4

3− 4
(

1
x1

+ 1
x2

) < x3 <
2 · 4

3− 4
(

1
x1

+ 1
x2

)
• Determining the possible integer values of x3 and calculating for each possible triplet of x1,
x2, x3 the values of x4 by applying the formula 4.6 as:

x4 =
4

3− 4( 1
x1

+ 1
x2

+ 1
x3

)

or (4.7):
1

x4
=

3

4
−
(

1

x1
+

1

x2
+

1

x3

)
• The integer values of x4 mark the valid quadruplets of x1, x2, x3, x4 that satisfy

1

x1
+

1

x2
+

1

x3
+

1

x4
=

3

4

Following these steps we can find 27 solutions for the problem:

3
4 =

= 1
2 + 1

5 + 1
21 + 1

420 = 1
2 + 1

5 + 1
22 + 1

220 = 1
2 + 1

5 + 1
24 + 1

120

= 1
2 + 1

5 + 1
25 + 1

100 = 1
2 + 1

5 + 1
28 + 1

70 = 1
2 + 1

5 + 1
30 + 1

60

= 1
2 + 1

5 + 1
36 + 1

45 = 1
2 + 1

6 + 1
13 + 1

156 = 1
2 + 1

6 + 1
14 + 1

84

= 1
2 + 1

6 + 1
15 + 1

60 = 1
2 + 1

6 + 1
16 + 1

48 = 1
2 + 1

6 + 1
18 + 1

36

= 1
2 + 1

6 + 1
20 + 1

30 = 1
2 + 1

6 + 1
21 + 1

28 = 1
2 + 1

7 + 1
10 + 1

140

= 1
2 + 1

7 + 1
12 + 1

42 = 1
2 + 1

7 + 1
14 + 1

28 = 1
2 + 1

8 + 1
9 + 1

72

= 1
2 + 1

8 + 1
10 + 1

40 = 1
2 + 1

8 + 1
12 + 1

24 = 1
2 + 1

9 + 1
12 + 1

18

= 1
2 + 1

10 + 1
12 + 1

15 = 1
3 + 1

4 + 1
7 + 1

42 = 1
3 + 1

4 + 1
8 + 1

24

= 1
3 + 1

4 + 1
9 + 1

18 = 1
3 + 1

4 + 1
10 + 1

15 = 1
3 + 1

5 + 1
6 + 1

20
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4.6 Observation

This method finds the expansions only given a number of fractions of the sum but has the advantage
that it finds all possible expansions in this case.
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Chapter 5

Comparison

Now we want to compare the differet methods that we have described in previous chapters. That
is we will expand the same proper fraction with the four methods and will analyse thw different
result.

Let the proper fraction
7

9

1. Fibonacci’s method
7

9
=

1

2
+

1

4
+

1

36

• With this method we expand every proper fraction
a

b
in only one way.

• The numbers of unit fractions of the expansion is less than or equal to the numerator a.

• The denominator can grow quite huge.

2. Golomb’s method
7

9
=

1

2
+

1

6
+

1

12
+

1

36

• With this method we expand every proper fraction
a

b
in only one way.

• The numbers of unit fractions of the expansion is less than or equal to the numerator a.

• The Golomb’s algorithm is better than the Fibonacci-Sylvester algorithm in the sense
that the in this case the denominators are guaranteed to be less than b(b− 1).

3. Method of practical numbers
7

9
=

1

2
+

1

6
+

1

9

• With this method we expand every proper fraction
a

b
in at least one way, as many

ways as there are the different ways in which the numerator can be written as the sum
of denominator divisors. The possible expansions are connected with the coefficient k
used (k = 2 if the denominator is a practical number). if we choose more numbers we
will have more expansions.

• The numbers of unit fractions is less than or equal to the number of divisor of b or kb.

• The denominators of the distinct unit fractions are less than or equal to the denominator
b or kb.
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We reclall that if you have the prime factorization of the number n, then to calculate
how many divisors it has, you take all the exponents in the factorization, add 1 to each,
and then multiply these ”exponents + 1”s together.

4. Geometric method

- two unit fractions: impossible

- tre unit fractions:
7

9
=

1

2
+

1

4
+

1

36

7

9
=

1

2
+

1

6
+

1

9

• With this method we find all the expansion of every proper fraction
a

b
fixed the

number of unit fractions.

• The numbers of unit fractions must be fixed previously.

• We find all the expansion so the growing of the denominator is not determinable.
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Chapter 6

The tree of fractions

We have already noted tin the previous chapters hat the identity

1

n
=

1

n+ 1
+

1

n(n+ 1)

holds for all n ∈ N0. This equality is known as the ”splitting relation”.

Therefore, for example,
1

2
=

1

3
+

1

6
or

1

3
=

1

4
+

1

12
and

1

6
=

1

7
+

1

42
.

We could go on and we will find a lot of fractions that we can we can arrange in a tree shape.

1

2

1

3

1

6

1

4

1

12

1

42

1

7

1

5

1

20

1

13

1

156

1

1806

1

43

1

56

1

8

... ... ... ... ... ... ... ...

Our goal is to find a formula to calculate the denominator of a fraction of the tree by knowing
its position, that is the number of its row (r) and the number of its column (c).

The formula is: For all r, c ∈ N0 with 1 ≤ c ≤ 2r−1

A (r, c) =

{
2 if r = c = 1[
A
(
r − 1,

⌈
c
2

⌉)
+ 1
]
·
[
A
(
r − 1,

⌈
c
2

⌉)]p
if r > 1

with

p = 1−
{
c+

1

2
· sgn(r − 2) ·

[
sgn

(
c− 2r−2 − 1

2

)
+ 1

]}
mod 2

Now we want to explain how we found it.
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6.1 The formula

Looking for the formula above we met several problems:

• the recursion of the formula;

• the need to operate differently with the unit fractions
1

n+ 1
and

1

n(n+ 1)
;

• the symmetry of the tree;

• the non-symmetry in the second row of the tree.

6.2 The recursion of the formula

Recursion means that in order to calculate one element of the tree we have to know the elements
in the previous rows.

Each element of the tree is obtained from an element of the previous row ⇒ r − 1. The two-
by-two elements are obtained from the one in the previous row in the middle of them ⇒

⌈
c
2

⌉
that

is we used the ceiling function.
It is necessary to start this process therefore we fixed at first A(1, 1) = 2 and then A(r, s) must

be a function of A
(
r − 1,

⌈
c
2

⌉)
so

A (r, c) =

{
2 if r = c = 1

f
[
A
(
r − 1,

⌈
c
2

⌉)]
if r > 1

6.3 The need to operate differently with the unit fractions
1

n + 1

and
1

n(n + 1)

Now we have to find the function f . We note that sometimes f
[
A
(
r − 1,

⌈
c
2

⌉)]
has to give

A
(
r − 1,

⌈
c
2

⌉)
+ 1 and sometimes

[
A
(
r − 1,

⌈
c
2

⌉)
+ 1
]
·
[
A
(
r − 1,

⌈
c
2

⌉)]
That is, in the second case we have to multiply by the factor

[
A
(
r − 1,

⌈
c
2

⌉)]
whereas in the

first it is not necessary.
Therefore we put an exponent p in this factor which becomes 0 or 1.
So we must found a function that it can help us to obtain an resoult that it is only 1, for the

odd number, or 0 for the even number, so for the number that they can be divisible by two. To
obtain this exponent we use a new function: mod, which gives the rest of the euclidean division
between two integer numbers.

So the formula becomes:

A (r, c) =
[
A
(
r − 1,

⌈ c
2

⌉)
+ 1
]
·
[
A
(
r − 1,

⌈ c
2

⌉)]p
with p = 1− cmod 2.

36



6.4 The symmetry of the tree

With the second formula we get a correct tree.

1

2

1

3

1

6

1

4

1

12

1

7

1

42

1

5

1

20

1

13

1

156

1

43

1

1806

1

8

1

56

... ... ... ... ... ... ... ...

But to have a more ”elegant” tree we could build it in a symmetrical way. This symmetry is
get by the location of the greatest fractions on the left for the first 2r−2 elements of the tree and
on the right for the element from 2r−2 + 1 to 2r−1,

Therefore we have to change the exponent p before and after 2r−2. We want the follows
exponents:

...
0 1 1 0

0 1 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 0 1 0

...

We are looking for a function that gives 0 or 1. We know the function

x

|x|
=

{
−1 if x < 0

+1 if x > 0

and we can change it with a tralation and a dilatation and we get

1

2
·
(
x

|x|
+ 1

)
=

{
0 if x < 0

+1 if x > 0

The change of the value of the exponent have to happen after the column 2r−2 that is if

c− 2r−2 − 1

2
< 0 then the exponents has to be 0 otherwise ha to be 1. Then the function is

1

2
·

(
c− 2r−2 − 1

2∣∣c− 2r−2 − 1
2

∣∣ + 1

)
=


0 if c− 2r−2 − 1

2
< 0

+1 if c− 2r−2 − 1

2
> 0

So the formula becomes:

A (r, c) =
[
A
(
r − 1,

⌈ c
2

⌉)
+ 1
]
·
[
A
(
r − 1,

⌈ c
2

⌉)]1−[c+ 1
2
·
(

c−2r−2− 1
2

|c−2r−2− 1
2 |

+1

)]
mod 2
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6.5 The non-symmetry in the second row of the tree

The last problem is that the esponents in the second row are 0 and 1 hence they are not symmetric.

0 1
0 1 1 0

0 1 0 1 1 0 1 0
... ... ... ... ...

Then the last work is to correct the formula to obtain the non-symmetry only in the second
row but to keep symmetry in the remaining rows.

Therefore we need a function that changes the exponents only from the second line onwards.
We use the sign function:

sgn (x) =


−1 if x < 0

0 if x = 0

+1 if x > 0

Then we introduce a factor that is 0 or 1 to produce a change of the order of the fractions only
from the second rows onwards. This factor is (r − 2). So

sgn (r − 2) =


−1 if r < 2 (it never happens)

0 if r = 2

+1 if r > 2

The case r < 2 it never happens in our tree. If r = 2 the simmetry is canceled, in the other
case the symmetry remain because the result of this function is equal to 1.

The formula now becomes:

A (r, c) =
[
A
(
r − 1,

⌈ c
2

⌉)
+ 1
]
·
[
A
(
r − 1,

⌈ c
2

⌉)]1−[c+ 1
2
·sgn(r−2)·

(
c−2r−2− 1

2

|c−2r−2− 1
2 |

+1

)]
mod 2

At last we noted that, for x 6= 0 sgn(x) =
x

|x|
and then we can transform the esponent into the

final form:

1−
{
c+

1

2
· sgn(r − 2) ·

[
sgn

(
c− 2r−2 − 1

2

)
+ 1

]}
mod 2

6.6 The expansion of 1.

With the result of the previous section we can expand the number 1 into a fixed number of unit
fraction.

Infact 1 =
1

2
+

1

2
but the second unit fraction

1

2
can be expand into unit fractions of the rows

of the tree of fractions. Then we can choose a number of unit fraction greater than 2 and expand
the number 1.
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1

2
+

1

2
= 1

1

3
+

1

6
+

1

2
= 1

1

4
+

1

12
+

1

42
+

1

7
+

1

2
= 1

1

5
+

1

20
+

1

13
+

1

156
+

1

1806
+

1

43
+

1

56
+

1

8
+

1

2
= 1

... ... ... ... ... ... ... ...

For example

• in 3 unit fractions: from the second row of the tree

1 =
1

2
+

1

3
+

1

6

• in 4 unit fractions: from the third row of the tree

1 =
1

2
+

1

3
+

1

42
+

1

7

or

1 =
1

2
+

1

4
+

1

12
+

1

6

• in 5 unit fractions: from the third row of the tree

1 =
1

2
+

1

4
+

1

12
+

1

42
+

1

7

• in 6 unit fractions: from the fourth row of the tree

1 =
1

2
+

1

5
+

1

20
+

1

12
+

1

42
+

1

7

or

1 =
1

2
+

1

4
+

1

13
+

1

156
+

1

42
+

1

7
or

1 =
1

2
+

1

4
+

1

12
+

1

1806
+

1

43
+

1

7
or

1 =
1

2
+

1

4
+

1

12
+

1

42
+

1

56
+

1

8
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