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A disease is spreading. At every moment for each patient occurs that:
a patient could infect another entity with a certain probability; a patient
could heal with a certain probability; a patient could die with a certain
probability. What could happen considering different probabilities? Is it
better to vaccinate a part of the population or to isolate the population in
small groups?
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Brief presentation of the conjectures and results obtained:

We attempted a statistical approach, developing a n×n cells matrix that represents the population, with
the disease spreading by one person and infecting the still healthy adjacent cells. Our simulation uses the
three probabilities as input parameters and returns the percentages of dead, healed and not even infected
people, as well as the duration of the pandemic. We checked the behaviour of the simulation in relation to
real diseases and looked for mathematical relations for the output data. We finally developed the algorithm
to take into account the possibility of vaccination and to simulate people movement.

Contents

1 Approach to the problem 3

2 Simulation tools 3
2.1 C++ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Java Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Simulated models 6
3.1 The simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Data analysis, static case 9
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 More realistic models 13
5.1 Vaccination and herd immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 People movement and transmission ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Conclusions 14

Webography 16

2



1 Approach to the problem

Due to the huge dimensionality of the problem’s parameters, that in our opinion would have prevented
the success of an analytical approach, a numerical/statistical method has been followed. In fact we developed
Java and C++ tools both to simulate several disease models/scenarios and to retrieve and statistically treat
the output data.

Another important point of our strategy has been to adopt a matrix point of view of the situation. The
structure and the behaviour of this matrix changed during the study of the problem. In fact we started
with a static approach where every cell represented a person who can’t make any movement and than we
switched to a more realistic simulation, adding the possibility of movement and vaccines which inhibit the
spread of the disease.

Our Java application works with the input parameters mentioned in the problem statement: the infection,
healing and death probabilities. We also decided to develop our simulation based on some real epidemics
and to compare our results with the ones expected from the aforesaid diseases. So we extracted some data
for medical literature and adapted them to the ones requested in the problem statement.

2 Simulation tools

Our simulation has been developed firstly using a C++ algorithm, and then we switched to a Java
application in order to use a graphical user interface (GUI).

2.1 C++ Algorithm

This application has been used to give us a quick idea of the behaviour and the spreading of the infection
in a static model in which all the people are in contact each other (that will be thereafter referred to as the
rock concert model). In this version of the program the basic logic of transmission of the disease has been
sketched out.

Our first concern was to define a metric on the matrix: we decided to consider all the 8 cells neighboring
to a chosen one as adjacent, and capable of infecting it as a consequence.

We also decided to let the disease spread from a single cell (the zero patient) located in the center of
the matrix. In our opinion this choice does not involve a significant loss of generality, because in the real
case the disease would be able to spread in a world large enough not to depend in a significant way on the
starting position.

We finally agreed in fixing some additional rules regarding the behaviour of the simulation:

- healed people are immune from the disease and can no longer spread it;

- the illness cannot even be spread by dead people;

- the epidemic is thus to be considered exhausted when there are no longer any infected people in the
matrix.

The better to follow the spread of the disease, we also decided to adopt a graphical approach according
to the following numerical and chromatic codes:

State Number Color

Healty 0 White
Infected 1 Yellow
Healed 2 Green
Dead 3 Red

At each time step (arbitrarily assumed equal to one day) the status of every cell is updated according to
the input probabilities. The algorithm proceeds evaluating the status of each cell of the matrix scanning it
by row and putting the updated values on a transport matrix. Every status change is evaluated generating
a random number which is then compared with the corresponding probability.
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The possible states are checked in the following order and with the corresponding outcomes:

- if the cell’s status s = 3 or s = 2 (the patient is dead or has already healed) the value remains the
same;

- if the cell’s status s = 1 the patient is diseased and it can die (s′ = 3), heal (s′ = 2) or stay infected
(s′ = 1) according to the corresponding input probabilities;

- if the cell’s status s = 0 (the person is still healty) it can be infected depending on the corresponding
probability and the number of neighboring patient.

In the last case, in order to greatly reduce the number of random extractions (and thus improve the run
time as a consequence) we searched a way to evaluate a total infection probability dependent on the number
of adjacent patients. We figured out that this probability can be evaluated as complementary to that of
resisting the attempts of infection by all the neighboring patients, as shown in figure (1).

Figure 1: Cumulative probability of contracting the disease as a function of the number of neighboring
patients and of the input infectivity. This probability can be evaluated as complementary to that of resisting
the attempts of infection by all the adjacent patients.

Since the process is essentially binomial in nature, it’s in fact difficult to determine a direct formula for
the cumulative probability as the sum of gradually smaller contributions, while it’s way easier to determine
the overall probability of not being infected after n attempts, which turns out to be:

Hn = (1− i)n;

thus resulting in a total infection probability given by:

In = 1− (1− i)n. (1)

2.2 Java Algorithm

In order to simulate more complex scenarios, a Java algorithm that included the following features has
then been developed:

- the possibility to take into account the effects of vaccination with variable coverage;

- the movement of the people with different means of transportation;
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- the dimension of the matrix and its population;

- a random starting position for the zero patient ;

- the existence of various transmission routes corresponding to different infection radii;

- a Graphical User Interface (GUI) the better to handle all the aforesaid options.

Figure 2: The Graphical User Interface of the Java app.
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3 Simulated models

First and foremost, we had to establish some values of the probabilities to run the simulation. Initially
we defined the geometric locus in which the three probabilities had to stay in:

- The probability of infection i can assume values from 0 to 100% ;

- The sum of the probabilities of healing and death can assume values from 0 to 100% .

These conditions define a triangular prism, in which every point correspond to a triplet of probabilities that
can :

Figure 3: The triangular prism that is the locus of the parameters space.

We estimated some probabilities to run the program taking some data from medical literature. In
particular, we analised the basic reproductive ratio R0, the average course of illness N and the mortality
rate D of seven real diseases, given that:

- Basic reproductive ratio R0: average number of new cases that an ill patient generates during the
course of illness (considered as the whole duration of the disease);

- Course of illness N : average number of days that a disease lasts for, after which a patient can be
considered eventually healed or died;

- Mortality rate D: percentage of infected people that are dead after the course of the disease.

We summed up the data in a table:

Disease R0 N D(%)

Ebola 2 30 50
SARS 3.5 45 15

Pertussis 14.5 80 0.35
Diphteria 6.5 12 15
Measles 15 20 0.35
Mumps 5.5 20 0.01

Flu 1.65 7 0.03

These data have then been used to calculate the three probabilities needed:
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- Probability of infection i: considered R0 as the ratio between the number of new cases that a pa-
tient generates during the course of the disease N and the maximum number of tries this could have
attempted over the same time, it can be expressed as:

R0 = N · i

In particular, in the static framework we have that the infection could spread the eight adjacent cells,
so the probability i has to be multiplied by 8:

R0 = 8N · i (2)

Thus, if follows that:

i =
R0

8N

- Probability of death d: the mortality rate D can be considered as the cumulative probability of being
dead after N days of the disease, it can be applied the same reasoning used to calculate In given i and
n (1), changing the number of infected adjacent cells n with the course of the diasease N :

D = 1− (1− d)N

It follows that:
d = N

√
1−D

- Probability of healing h: considered that the probability of being healed at the end of the course of
the diease is complementary to the probability of being dead, it follows that:

H = 1− (1− h)N = 1−D ⇒ h = 1− N
√

1−H = 1− N
√
D (3)

The three probabilities has been calculated for the seven diseases:

Disease i(%) d(%) h(%)

Ebola 0.8 2.28 2
SARS 1.0 0.36 4

Pertussis 2.3 0.004 7
Diphteria 6.8 1.35 15
Measles 9.4 0.02 25
Mumps 3.4 0.0005 37

Flu 2.9 0.004 69

Some arbitrary values of the probabilities have then been established, covering with a greater density the
low value zone, that is the more interesting one according to the data shown above. To do it properly we
ordered the diseases by each probability, obtaining graphs in which the horizontal axis represents a cardinal
number associated with the disease and the vertical one represents the corresponding probability, and fitting
the medical data with exponential relations.

The described method is shown in the graph 4 for the healing probability, while the overall results for
the three probability parameters are summarized in the following table.

i(%) d(%) h(%)

0.8 0.0004 2
1.2 0.002 4
1.8 0.008 7
2.7 0.035 13
4.1 0.15 22
6.3 0.66 39
9.4 2.9 70

12.5
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Figure 4: The exponential fit used to obtain input values of the healing probability for our simulations.

3.1 The simulation

To extract the data needed to do statistics on the evolution of the disease, each model has been run 100
times over a 501 × 501 cells matrix; the odd number chosen is big enough to let the disease spread almost
freely for many steps and permits to let it start from the very center of the matrix.
For each run are obtained:

- Percentage of not even infected population NI(%);

- Percentage of the population dead of illness D(%);

- Percentage of the population healed from the disease H(%);

- Number of steps (cycles ran) needed for stability N .

The average value and the corresponding standard deviation σ of these four parameters has been calculated
for each model.
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4 Data analysis, static case

The data obtained from our simulations have then been analysed by using pivot tables. In these graphs
the horizontal plane is defined by the three probabilities inserted in input in the simulations, while on the
vertical axis is placed one of the four data obtained in output. We decided to focus our attention on two
particular parameters: the days of duration of the pandemics N and the mortality rate D. The days of
duration of the disease are shown as a function of the three different probabilities in graph 5.

Figure 5: The number of days spent before stability against the three probabilities. A logarithmic scale is
used on the vertical axis to take into account the extreme difference in duration of the various simulated
disease models.

As first thing, it has been noticed that the duration of the disease decreases considerably as the probability
of healing increases. It is also possible to find an interesting fit for this relation: indeed, the logarithm of the
duration of the disease as a function of the healing probability follows a power law model, for fixed death
and infection probabilities:

lnN = a · hb, (4)

where b < 0 and a > 0.
Subsequently the mortality rate was placed in a graph and it has been possible to study its development

in connection to the input probabilities.
As in the previous case, a similar result has been noticed: increasing the probability of healing, the

mortality rates decreases. With this second graph, it can also be seen that some values of the mortality rate
are much smaller than other ones and, for this reason, some areas must be zoomed in to be able to see these
values.

Instead, considering the trend of the mortality rate compared to the probability of infection, it is possible
to find a particular fit for this relation, indeed, the increasing part of the graph follows a logarithmic model,
for fixed death and healing probabilities:

y = a · ln(x+ b) + c,

where y = D and x = i.
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Figure 6: Power law model for the relation between the logarithm of the duration of the disease and the
probability of healing

Figure 7: The mortality rate as a function of the three probabilities. A zoom on the areas where the data
of the mortality rate are apparently zero shows they are just smaller in order of magnitude.

4.1 Results

The data obtained from the simulations were checked with those collected from some real diseases which
had similar probabilities: measles and ebola. As measles had slightly different probabilities of death and
healing from the one used in the simulations, the two mortality rates obtained are different and in particular
the one calculated from the simulation is five time bigger than the measles one, but is still acceptable.
Considering ebola, the two mortality rates are more similar but there are some differences in this case too,
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Figure 8: Logarithmic model for the relation between the mortality rate and the probability of infection,
both in percentage

due to the same motive as before.

MEASLES

• Known data

– Basic Reproductive Ratio R0 = 15

– Mortality Rate D=0,035%

– Duration R = 20 days

• Estimeted parameters:

i = 9, 4%, d = 0, 02%, h = 25%

• The most similar simulated model:

i = 9, 4%, d = 0, 035%, h = 22%

• Estimated mortality rate

D=0,157%

EBOLA

• Known data

– Basic Reproductive Ratio R0 = 2

– Mortality Rate D=50%

– Duration R = 30 days

• Estimeted parameters:

i = 0, 8%, d = 2, 28%, h = 2%

• The most similar simulated model:

i = 0, 8%, d = 2, 9%, h = 2%

• Estimated mortality rate

D=67,5%

As first result it has been proven that, if the probability of infection is high enough, the ratio between the
percentage of healed patients H and the percentage of dead patients D is approximately the same between
the probability of healing and the probability of death;

H

D
' h

d

It has been also proven that decreasing the probability of infection this relation is not true any more.
Using the mortality rate graph it has been possible to study the change of this parameter in different

situations, in connection with the change of the probabilities and two different kind of results have been
obtained. It has been observed that, fixing the probabilities of infection and death and increasing the healing
one, the mortality rate has a monotonic decrease.
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Instead, if the probability of infection and healing are fixed, it has been proven that the biggest value of
the mortality rate doesn’t always correspond to the biggest value of the probability of death: this happens
because if the probability of death was very high many patients would die and the disease would not even
have the time to spread.

Figure 9: Trend of the mortality rate in function of the probability of death and the probability of infection.

This graph shows different developments of the mortality rate compared to the probabilities of infection.
Different colours correspond to different curves: it can be seen that if the probability of infection is a low
value, the mortality rate has a monotonic increasing; but as the probability grows, the mortality rate changes
its trend and, in particular, has its biggest value when the probability of death is not the biggest. Instead,
when the biggest value of the probability of infection is reached, the mortality rate has a monotonic increase,
again.
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5 More realistic models

In order to make the simulation more realistic, models describing the effect of vaccinations and movement
have finally been added.

5.1 Vaccination and herd immunity

For simulating the effect of a vaccination we can choose a %V (vaccination percentage), inserted in the
input data, which describe the percentage of vaccinated people inside the matrix, allocated with a random
distribution. To introduce the vaccines in the simulation we considered the cell representing the person
vaccinated with the number 4 and to represent it in the graphic interface it was colored with the blue color.
Therefore, the vaccinated cell can not be contagiable and at the end of the run all the vaccinated people were
considered healthy. Before we started the simulation, we focused on the Herd Immunity Threshold (HIT),
that is the percentage of the population that must be vaccinated so that the disease does not spread:

HIT = 1− 1

R0

We simulated a measles-like disease (i = 10%, d = 0, 1% e h = 25%) with increasing percentages of
immunized people (0 to 99%) each run 100 times. We attempted to provide both a semi-theoretical and a
data estimation of HIT.

Starting with the theoretical estimation, we extracted N solving the following system by means of nu-
merical methods: {

d = 1− N
√

1−D;

h = 1− N
√
D.

Then we found R0 from the relation (2), thus obtaining:

HIT = 1− 1

R0
= 0.92 = 92%.

Considering the data estimation of HIT, using the 0%V files data, we calculated

D =
%dead

1−%notinfected
,

and inverted the relation (3), thus obtaining:

N =
lnD

ln(1− h)
.

We then found R0 as shown above, finally obtaining

HIT = 1− 1

R0
= 0, 9566 = 95, 66%.

Considering the great number of uncertainties inherent in the simulated framework, the two estimated
percentages can be considered compatible with each other and with the value reported in the medical
literature (92− 95%).

5.2 People movement and transmission ways

In order to simulate a more realistic behaviour, the algorithm has been modified to include the movement
of people and different kinds of transmission modes. To obtain this new algorithm we had to add a new value
to the matrix: −1. This value corresponds to the empty cell, necessary to allow the movement of people.

As mentioned before, we found it useful to define an additional parameter: the range of movement. This
parameter determines the maximum number of cells that a person can travel in one step. The new position is
determined by a random number for the x axis and a random number for the y axis ranging from - movement
radius to + movement radius.

The movement rays we have defined are:
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- static;

- walking (max 100 cells per axis);

- bike (max 200 cells per axis);

- car (max 400 cells per axis).

The random is an integer generated between the values just described. Being in the random the possibility
of obtaining the value 0, people have the possibility to remain still. Another condition that we used when
we decided to implement the movement is the fact that each person can not move on to another.

The other parameter added is the radius of infection: in this way it is not enough to check only the 8
adjacent cells to determine the probability of being infected, but the (N · 2 + 1)2− 1 cells around the person
forming a new control square.

Figure 10: An example for trasmission routes.

For example, if the radius of infection is 3, as we can see in the image, the controlled cells are the 48
around. In this case the infected people in the delimited region are 5, so the probability of the central cell
to be infected corresponds to:

In = 1− (1− i)5

We defined different rays of infection:

- direct Infection (r=1 cells);

- droplets (r=5 cells);

- air (r=10 cells);

- vector (r=20 cells).

After defining the movement, we proceeded to collect the data to find the HIT in a more realistic model.
Using again our measles-like disease, vaccination rates that focused around the hypothetical HIT (from 80%
to 99%), the maximum range of motion (Car) and the biggest radius of infection (Vector) we obtained this
graph, representing the number of uninfected people compared to the vaccination rate:

It is found that HIT in the static model is quite similar to the one evaluated in this model. In fact, the
HIT calculated from this model, as can be seen from the graph, is equivalent to 92%.
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Figure 11: HIT for the model with movement

Conclusions

In this work, a numerical and statistical approach has been used to simulate the spread of various diseases
on a two-dimensional matrix. Using C++ and Java languages, various algorithms have been developed to
simulate the behaviour on a static framework first, and then extend the study to a more general case including
vaccinations, people movement, and different transmission ways.

The problem statement required to consider three different probabilities: infection, healing and death
ones. We decided to chose their values by comparison with data related to real diseases and checked that
our simulation provided results in accordance with what was expected for the same epidemics.

Regarding the obtained results it is also essential to highlight that, while some output distributions (6)
can be fitted with certain relations (4), on the other hand a precise mathematical law describing the spread
of the disease can’t easily be defined in our two-dimensional model. This is shown for example in graph 9,
where it can be noticed that the number of dead people isn’t always associated with the maximum death
probability, but it is determined by conditions of unstable equilibrium in which the infectivity of the disease
plays a decisive role too.

In the last part of this work, a more general model including vaccinations, people movement, and dif-
ferent transmission ways, has finally been developed. Vaccinations have been firstly applied on the static
framework, estimating the Herd Immunity Threshold for a measles-like disease both in fully numerical way
and semi-theoretically, and verifying that the value obtained was compatible with that reported in the med-
ical literature. Finally a fully dynamical framework was implemented, including various forms of people
movement and transmission ways, verifying in this case too that the HIT obtained was compatible with the
values previously estimated and reported in the medical literature.
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