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On définie deux nouvelles opérations: a ® b = min{a;b} et a®@ b =a + b,
par exampl: 3® 7 =3, 3® 7 = 10. Quelles sont les propriétés de cette
nouvelle addition et multiplication? Est-ce qu’on peut ”tout-faire” comme
avec D'addition et la multiplication que ’on connait? Peut-on définir la
soustraction et la division?

Brief presentation of the conjectures and results obtained:

The first step is to retrace the construction of the structure (C, +, -), starting from the Peano axioms, in
order to obtain the tropical semiring (R U {400}, ®, ®).

As C, such semiring is algebraically closed, that is every univariate polynomial can be factorized in linear
factors, hence a tropical version of the fundamental theorem of algebra holds.

Finally, we study how tropical polynomials can give raise to tropical algebraic curves (in R? in particular).
It is difficult here to recognise the correspondence with classical geometry, that is lines, circumferences,

parabolas ..., as the curve essentially depends on the number of monomials rather than the degree of the
polynomial.
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Introduction

The proposed subject is the following;:

On dfinie deux nouvelles oprations: a ® b = min{a;b} et a ® b = a + b,
par example: 3@ 7 = 3, 3® 7 = 10. Quelles sont les proprits de cette
nouvelle addition et multiplication? Est-ce qu’on peut ”tout-faire” comme
avec ’addition et la multiplication que ’on connait? Peut-on dfinir la sous-
traction et la division?

We define two new operations: a @ b = min{a;b} and a ® b = a + b, for
example: 3G 7 = 3, 3® 7 = 10. What are the properties of these new
addition and multiplication? Can we do everything as with the the usual
addition and multiplication? Can we define subtraction and division?



Chapter 1

Building the structure (R, &, ©®)

Our first aim is to define a new structure, formed by the numeric set R equipped with the two new
operations: the tropical addition @ (i.e. the minimum) and the tropical multiplication ® (i.e. the sum).

We first ask whether in the construction of such a structure it is possible to consider a numerical set
which is already defined a priori - in our case the standard set R of real numbers - or if such a set should be
defined through the operations of the structure itself - in this case, the minimum and addition.

We face therefore with a rather challenging question: are the sets that define the operations or vice versa?

Is is well known that the standard structure (R, +, ) is constructed starting from the axiomatic definition
of (N,+,-) and this basic structure is then extended to (Z,+,-), then (Q,+,-), and finally to (R,+,-) in
order to make the numeric set closed by the various operations defined.

We decide then to proceed in a similar manner in the definition of the tropical structure (R, ®, ®).

Besides other questions arise: in standard mathematics we can think of the multiplication as an iteration
of the addition, but here, the tropical multiplication is not the iteration of the tropical addition. Should we
perhaps consider to define the new structure also the operations which are, respectively, the iteration of the
addition of tropical and tropical multiplication?

We recognize, however, that it will probably be true that the classical multiplication is the sum of classical
iteration only in (N, +,-). In fact since childhood we all know that for example 3 - 5 means adding up 3 to
itself 5 times (or add 5 to itself 3 times). How can we give a meanin in the case of 7 - v/5, where we add
7 to itself for v/5 times, or sum /5 to itself for 7 times? Probably, the "basic” definition in (N, +,-) of
the multiplication as an iteration of the addition is enlarged at the same moment in which we extend the
structure over (N, 4+, ).

1.1 Let me count: the basic structure (N, @, ®)

Counting objects is the first task of a numerical set. The set N exactly captures this: it gives a name for
the empty collection, and a new name to every collection obtained by adding another object.
Hence we define the numerical set N by using the Peano axioms:

Definition 1.1.1. Peano Azxioms

i) The set N contains the zero:
0eN

it) The set N contains the successor s(n) of each of its elements n:
neN = s(n)eN

where the successor function s is defined by:

a) #neN. s(n)=0



b) s(n)=s(m) = n=m

i11) Among all the sets X that enjoy properties i) and i), N is the smallest:
let X be a set such that:

e 0cX
eneX = s(n)eX

then N C X.
All the sets that satisfy the Peano axioms are isomorphic, hence:

Definition 1.1.2. The set N of natural numbers is the (only) set that satisfies the Peano axioms.

Ordering. The set N is well-ordered by the relation <, defined by n < s(n) Vn € N.
It is a total ordering; that means the relation < is reflexive (m < m), anti-symmetric (if m <n and n <m
then n = m), transitive (if m < n and n < k then m < k) and total (for every n, m € Nitisn <mVm <n,
that is two numbers can always be compared).

m<=m<n
Definition 1.1.3. The minimum of two numbers m,n € N is defined as min(m,n) =
n<=m>n

In the usual arithmetics, N is equipped with the following operations: the addition +, the multiplication -,
and the power ":

Definition 1.1.4. Standard operations on N

4+ : NxN—N - : NxN-—N ANt NxN—N
m+0=m m-0=0 m"0 =
i+ 5(n) = s(m + ) m - s(n) = m -+ (m ) SO = - ()
m+n=s(...s(m)...) m-n=m+...+m+0 mM=m-...-m-1
N—— —_— —
n n n

Observe how power ” is the iteration of multiplication -, which is itself the iteration of addition -+, which
is itself is the iteration of successor function s.

We introduce now the main operations of the tropical arithmetics, the tropical addition @ (that coincides
with the minimum), and the tropical product ® (that coincides with the standard addition).

Definition 1.1.5. Tropical operations on N

® : NxN—N ® : NxN—N ® : NxN—N
m<=m<n mo0=m m®0 =0
mon=
n<=m>n m© s(n) = s(mon) m® ) =m @ (mn)

= min(m,n) mon=m4n me" =m -n

As before, tropical power @® is an iteration of tropical multiplication ®, but now iterating tropical addition
@ we don’t obtain the tropical multiplication ®. We could ask what operation arises in this way; we easily
see that such an operation would be quite uninteresting, as by idempotency of the @ (minimum) for all n
we get:
men=m®...Hom =min{... min{m,m},...m} =m

n



In the following, we are going to explore the properties enjoyed by the new operations of tropical addition
(minimum) and tropical multiplication (standard addition) in the set N, referring to the properties of our
usual operations (standard addition and multiplication).

Definition 1.1.6. Properties of the operations. Let %, T be binary operations on a set S, then:

e the operation * is commutative on S if and only if for all x,y € S it is

TkY=y*x

e the operation * is associative on S if and only if for all x,y,z € S it is

e the operation * is dissociative on S if and only if for all x,y,z,w € S it is

rxy=xx*(zxw) whenever Yy = zx*w

e the operation * is distributive over 1 on S if and only if for all x,y,z,w € S we have both

xx(ytz)=(r*y)T(x*2) (distr. on the right)
(y12)xz=(y*xx)t(zxx) (distr. on the left)

e the operation x has an identity element e € S if and only if for all x € S we have both
rre=zx (right identity)
exr =1 (left identity)

e the operation x with identity e has inverse elements if and only if for every x € S there exists an
element ©' € S such that
rxz' =e (right inverse)

¥xz=e (left inverse)

The usual operations + and - are both commutative, associative, dissociative, - distributes over +, the
identities are 0 and 1 respectively, and the inverses do not exist in N (they would be —z and x~! respectively).

Moreover, the power ” is neither commutative, nor associative, nor dissociative, it distributes on the left
over -, and admits only the right identity 1; no left identity exists, as well as the inverses in N (the right
inverses would be the logarithms, and the left inverses the roots).

Let’s explore now the properties of the tropical operations.

Theorem 1.1.7. Tropical addition @, tropical multiplication ®, and tropical power @ are both commutative.

Proof. For the tropical addition @, given m,n € N, suppose without loss of generalityﬂ m < n. Then:
m @ n=min{m,n} =m =min{n,m} =ndm
The case of tropical multiplication ® follows from that of standard addition +, as given m,n € N it is:
moOn=m+n=n+m=noGm

The same for tropical power ®, directly following from that of standard multiplication -. O

1The other cases are symmetric



Theorem 1.1.8. Tropical addition &, tropical multiplication @, and tropical power ® are both associative.

Proof. For the tropical addition &, given m,n,p € N, suppose without loss of generality m < n < p. Then:
m @ (n @ p) = min{m, min{n, p}} = min{m,n} =m

(m @®n) ®p=min{min{m,n},p} = min{m,p} =m

The case of tropical multiplication ® follows from that of standard addition +, as for all m,n,p € N:
monop)=m+(n+p)=(m+n)+p=(mon)Op

The same for tropical power @, directly following from that of standard multiplication -. O

Theorem 1.1.9. Tropical addition @, tropical multiplication ®, and tropical power ® are both dissociative.
Proof. For the tropical addition @, given m,n,p,q € N, suppose without loss of generality p < g. Assume
n=p®q=min{p,q} =p
hence n and p must coincide, and thus:
m® (p @ q) = min{m, min{p, ¢}} = min{m,p} =medp=modn

The case of tropical multiplication ® follows from that of standard addition +, as for all m,n,p,q € N,
whenever n =p® q = p+ q it is:

moOn=m+n=m+(p+q¢g) =mo (pOgq)

The same for tropical power @®, directly following from that of standard multiplication -. O

Theorem 1.1.10. Tropical multiplication © distributes over tropical addition @;
Tropical power ® distributes over tropical multiplication ©.

Proof. Given m,n,p € N, suppose without loss of generality m < n < p. Then:
mo n@®p)=m+min{n,p}=m+n=maon

(meon)®(moeOp)=min{m+n,m+p}=m+n=maon
because standard addition is monotone (that is @ < b implies a + ¢ < b+ ¢ for every a, b, ¢).

The other case is symmetric, as the tropical operations are commutative.
(m&n)Op=(mop)&(nop)
The second statement follows directly from distributivity of - over + in standard arithmetics, as:
m®mop)=m-(ntp)=m-n+tm-p=m®dn)©(mep)

(neOp)@m=(n+p)-m=n-m+p-m=naem)o (p@®@m)

Theorem 1.1.11. (Freshman’s dream) In N, tropical power ® distributes over tropical addition @.



Proof. Given m,n,p € N, it is:
p®me) — min{m, n} - p = min{m - p,n - p} = m® @ n®»

because standard multiplication is monotone (that is a < b implies a - ¢ < b - ¢ for every a,b,c, as ¢ € N
is non-negative). The other case is symmetric, as the tropical operations are commutative:

p®(mEBn) _ ®m EBp@n

p-min{m,n} =min{p-m,p-n}t =p

Theorem 1.1.12. The identity of tropical addition & does not exist in N.

Proof. The identity u for tropical addition would satisfy m = u ® m = min{u, m}, if and only if m < u for
all m € N. That is, u would be the greatest element of N. Of course such an element does not exist in N. [

We can add the element u© = +oc0o to the set N, provided we define the operations on it:
m @ +oo = min{m, +oo} = m, m® +o0o = m + 0o = +00, m@ +o0o=m-00 =400
Note that the second expresses the tropical analoguous of the usual absorbing propery of the zero element:
m-0=0
Theorem 1.1.13. The identity of tropical multiplication ® is 0.

Proof. 1t directly follows from standard addition, as m © 0 =m 4+ 0 =m. O

Theorem 1.1.14. The tropical addition @ does not admit inverses.

Proof. The statement is trivial for N, as there is no identity for tropical addition in N. Even if we endow
the set N with the identity +o0o, we cannot define inverses for tropical addition.

In order to search for the inverse of n € N, we to find a m € N such that +0o = m & n = min{m,n} and
such a number m does not exist, because min{m,n} = +oc if and only if m = +o00 and n = 4+o00. Therefore
400 is the inverse of itself, and is only element that possesses an inverse.

None of the other natural numbers admits an inverse. The problem is the loss of information caused by
the tropical addition (i.e. the minimum), that makes the tropical addition & not injective. For example

202=2 2@3=2 2@4=2, 265=2,

hence it would be impossible to define a kind of tropical subtraction &, that recovers an addend, given the
sum and the other addend. O

Theorem 1.1.15. In N, the tropical addition & does not admit inverses.

Proof. Similarly to what happens with standard addition, for a number n € N there is no element m € N
such that 0 = m ®n = m + n, except when m =n = 0. O

As for 400, we can extend the set of numbers to include the such inverse elements for tropical multi-
plication ®. Therefore, while no analogous extension from N to Z exists, we can find a correspondent for

Q.

Definition 1.1.16. (Zero-product property)
A structure (S, 1,%) enjoys the zero-product property if for all x,y € S it is (here u is the identity for t)

T*xYy=1u — r=u V y=u



Theorem 1.1.17. In N, the zero-product property holds both for tropical addition and tropical multiplication.

Proof. Consider the structure (NU {+oco}, &, ®).
For the tropical product @ (hence u = +00, the identity for @) given a,b € NU {400} we have:

+too=moOn=m-+n — m=+oco0 V m =400

because otherwise the sum of two finite numbers is always finite.

In the case of tropical sum @ (note that here it is u = 0, the identity for ®) given a,b € NU {400} we have:
0=m®n=min{m,n} = m=0V n=0

Note that this last statement is a pecularity of NU{+o00}, as it is the only numerical set having the minimum
element 0. Therefore, it will no longer be valid in the following extended structures. O

1.2 Extending with quotients: the rational structure (Z,®, ®)

In the previous section we have seen that in N no inverse elements exist (except for identities). What the
classical arithmetics do at this point is to extend the number set in order to include them, first the inverses
for addition + and then for multiplication -. We try to follow the same steps for the tropical context.

While there is no chance to do this for tropical addition @ (see Theorem , we can add inverses
of tropical multiplication ®, and define the set of quotients. Since tropical multiplication ® coincides with
standard addition +, this construction turns out to be the same of the usual set of relative numbers Z.

Definition 1.2.1. (Structure of quotients Z) Given two natural numbers n,m € N, we can define their
quotient as the equivalence class of couples [(n,m)], considering two couples equivalent when:
(n,m)=(n',m)<=nom =n"Om

We call Z the set of quotients, in analogy with the usual construction.

Ordering. Likewise N, also Z is a total ordered set, where the order relation is defined as:
(inZ) [(n,m)] <[(n',m)] = nom <n'©m (inN)

and hence the extension in Z for the minimum is straightforward.
We can extend to Z the tropical operations previously defined for N.

Definition 1.2.2. Tropical operations on Z

& : LxZ—1 [(m,m)] @ [(m',n)] = min( [(m,n)], [(m,n")] ) (in Z)

®: ZXxZL—1T [(n,m)] ©[(n,m)] = [(nOn,mem)

®: ZLxZ—17 [(n,m)] ® [(n',m)] = [(n®" ©@m®™ m® ©n®™)]

As a consequence of the redefinition of operations, it is appropriate to analyze their properties in this
new structure Z.

The associative, dissociative and distributive properties, still hold for the new operations in Z.

Also the considerations for identity elements (+o0o = [(4+o00, n)] for @, 0 = [(n,n)] for ®, and 1 = [(s(n), n)]
for ®), for minimum operation and for tropical product are still valid in Z, as well as those for the symmetrical
elements with respect to a minimum.

The only difference is that in this new structure the symmetrical elements with respect to tropical
multiplication ® exist:



Definition 1.2.3. (Symmetric element w.r.t. @) Given a quotient [(n,m)] in Z, its symmetric (inverse)
element is [(m,n)] and is an element of Z, and is denoted with ©[(n,m)].

The correctness of the definition is straightforward:
Oln,m)] ©[(n,m)] = [(m,n)] ©[(n,m)] = [(nOmnom)] = [(n+mn+m)] = [0,0)]=0

Hence observe how the construction above embeds N into the new set Z: every natural number n € N
can be identified with the couple ®n = [(n,0)]. Then its inverse with respect to tropical multiplication ® is
©On = [(0,n)]. Furthermore this embedding is conservative on operations, for example , in the case of @:

[(7,0)] - [(n/,0)] = [(n®" 09,090 ©0%%)] = [(n-n'+0-0,0-0+0-0)] = [(n-n’,0)]

in other words, the power of two natural numbers is again a natural number, having the result the same
form of the two operands.

Definition 1.2.4. (Tropical division) Given two numbers [(n,m)], [(n',m)] € Z, where [(n',m')] # 400
we can define their division as:

[(n,m)] @ [(n',m)] = [(n,m)]© (O[n,m)]) = [n,m]o[(m n)] = [(nom mon)]

Again, the correspondence with standard arithmetics is quite elegant: while usually we are not allowed
to divide by 0 (which is the identity for +), here tropical division is not defined on +oco, i.e. the identity
for @. The reason is again similar, as tropical multiplication by +oo is neither surjective (its result can be
solely +o00, hence division by +oo could be defined only on +o0 itself), nor injective (for every number ¢,
g+ 400 = +00), hence cannot be defined.

Being defined as a tropical product with the symmetric element, the tropical division inherits all the
properties of the tropical product.

Example 1.2.1. (Mazimum) With the availability of multiplicative inverse ©, we can represent also the
maximum operation, as the duaﬂ of the minimum, i.e. tropical addition ®:

max(g,p) = — min(—q, —p)
=0 [(0g) @ (op) ]
=0 [(gep)©(qop)]
=(qoOp)O(¢®p)
= p+q —min(g,p)

. 0 0 POq .
max(q,p) =-min(—¢,—p) = g5 = 337 = - = P+q—min(g,p)
P oy 19D

1.3 Extending with roots: the algebraic structure (Q,®,®)

In the previous section we added the multiplicative inverses, building (a tropical version of) rational
numbers Z. The usual construction now proceeds by considering the power operation ”; its inverses are not
rational numbers, in generalﬂ This leads to the definition of algebraic numbers, as the roots of polynomials
with rational coefficients.

Again we follow the same pattern. Here the situation is fortunately simpler: the tropical power ®, i.e.
the standard multiplication -, is commutative; hence its inverse (both left, tropical logarithms, and right,
tropical roots @) coincides with standard division :

2See: de Morgan’s laws.

3 Actually the situation is a bit more complex: as the operation " is not commutative, we have two different inverse
operations, the left inverses, i.e. logarithms, and the right ones, i.e. roots. We focus on the last ones. Allowing a root operation
means to include numbers like \2/§, but also \2/5 + 1, \3’/5 + %, 4~\2/§ and \5/ \2/5 + 1; which are the roots of the polynomials
22 -3, (z—1)2-3=22 -2z —2, 26 — 92* — 1023 4 2722 — 90z — 2, ﬁzQ — 3, and 210 — 225 — 2 respectively.

Hence it is equivalent to require the roots of all polynomials with rational coefficients.

N

10



Definition 1.3.1. (Structure of roots Q) Given two rational numbers q,p € Z, where p # 0 we can define
the p-th oot of q as the equivalence class of couples [(q,p)], considering two couples equivalent when:

(a.p)=(d.p) < ¢ =
We call Q the set of roots (algebraic numbers), in analogy with the usual construction.
Ordering. Likewise N and Z, also the set QQ has a total order relation < defined by:
Q) [(@¢p]<[d.p) <<  ¢® <d® wherep® >0 (inZ)

and hence the extension of the minimum in Q is straightforward.
In addition the set Q is dense with respect to this order relation <; that is, between two distinct roots we
can always find another (and thus infinite) root. Infact, given a # b € Q, suppose a < b, then we have:

a<a®(boa)® <b forall0 <ec<1

We can extend to Q the tropical operations previously defined for N and Z.

Definition 1.3.2. Tropical operations on Q

®:QxQ—Q [(¢,p)] & [(¢',p)] = min( [(¢.p)],[(¢",p)] )  (in Q)
©:QxQ—Q (@)@ [(¢"#)] = [(¢* © ¢, p*)]
®:QxQ—Q (@, p)] @ [(¢p)] = [(¢®7,p®")]

©:Q—Q ol p)] = [(©g,p)]

All the properties and the considerations made for the tropical operations in the case of Z still hold here.

Definition 1.3.3. (Symmetric element w.r.t. ®) Given a root [(q,p)] in Z, its symmetric (inverse) element
is [(p,q)]. It is an element of Q, and is denoted with @[(q,p)].

The correctness of the definition is straightforward:

[(q,p))® @l = [(g,p)]?lP] = [(¢®7,p®")] = [(1,1)] =1

Again, the construction above embeds Z into the new set Q: every quotient ¢ € Z can be identified with
the couple ®q = [(¢,1)]. Then its inverse with respect to tropical power @ is @q = [(1, ¢)].

Definition 1.3.4. (Tropical extraction of root) Given two numbers [(q,p)], [(¢',p)] € Q, where [(¢',p')] #
0 we can define the extraction of the [(¢',p’)]-th root of [(q,p)] as:

(@] @ 1(d,p)] = [(g,p)]2CL M = [(q,p)olF" ] = [(¢07 pod)]

With this definition, the tropical extraction of root inherits all the properties of the tropical power.

1.4 Extending with limits: the complete structure (R, ®,®)

At this point the classical arithmetics faces the need for measuring and representing geometry. The
problem is that the set of numbers, although quite large, has some holes and is not able to represent some
quantities, like 7, or e.

Fortunately we can approximate them arbitrarily well by using the numbers we have built so far.

A Cauchy sequence is a kind of list of such approximations, and its limit is the approximated quantity.

11



Definition 1.4.1. A sequence (ay,)n of values from Q is a Cauchy sequence if and only z'flﬂ
Ve>0.3n.Vmn>ne. |lap Qan| <e

The limit of the sequence (ay), takes the value l, and we write liﬂr_l an, =1 if and only if
n——+0o0o

Ve>0.IN..Vn>N.. |a, 0l <e
A numeric set is said complete if it contains the limits of all of its Cauchy sequences.

Definition 1.4.2. (Structure of limits R) The set R of real numbers is the set of the limits | of all the
Cauchy sequences that can be built in Q.

We can add the tropical additive identity +o0o and obtain the tropical semiring (RU {+c0}, ®, ®).
The correspondent usual construction would lead to the complete, algebraically closed set of complex numbers
C. In the following chapter we’ll see how C actually shares these properties with the tropical semiring (e.g
in polynomial factorization).

1.5 Correspondence between standard and tropical constructions
We constructed the tropical structure (R, ®,®) through subsequent extensions, starting from (N, ®, ®),

similarly to the standard construction that leads to the structure (C,+,-). We summarize correspondences
and discrepancies in this table:

Standard Arithmetics Tropical Arithmetics

(N, +,4), A s (N9, 0), ®
inverses + | |
T
inverses - | | inverses ©
@+ > (Z80)0
left inverses A | ' inverses @®
aryh o (@800
closure lim | | closure lim
- S Q.
((C,—|—, ), /\,lim oy (Rv@vG))v@vhm

a ifa>0

4 The absolute value | - | is defined as: |a| = {@ ifa<0
a ifa

12



Chapter 2

POLYNOMIALS IN (RU {+oc0}, @, ®)

In this second part we will deal with monomials and polynomials in (R U {+oc0}, &, ®) and then with
their factorization.

Prime matter was how to define monomials and polynomials, that is to follow our classical mathematics
or not. The classical mathematics defines the polynomial as a sum of products and not a product of sums.

Given the validity of the multiplication’s distributive property over addition and the fundamental theorem
of algebra, according to the classical mathematics these two expressions correspond.

So we thought about operating the same way in tropical geometry, for we already proved the validity of
the distributive property in the former chapter and for we will be able to prove the fundamental theorem of
algebra.

We also choose to use the same precedences of the classical mathematics (multiplication over addition).

Example:

a2 eber®" Gc=(a02®) e (bo ") S

We considered worthwhile lingering on the analysis of the equality between two polynomials.
In classical mathematics the principle of identity of polynomials states that two polynomials, reduced in
normal form, are equal if and only if they have the same degree and the coefficients of the same-degree-terms
are equal.

We will analyse if such principle is valid also for tropical geometry.

2.1 Monomials and polynomials

Definition 2.1.1. We are given x1...x,, as variables and they are represented in the tropical semiring (R U
{+o0}, @, ®). A tropical monomial is the tropical product between variables, where repetitions are allowed
and there can be tropical powers.

By using the commutative and associative property we can order the products and write the monomial
in normal form.
Example:

3020Y0r0r0y=301% 0yd?
Definition 2.1.2. A tropical polynomial is the tropical sum of tropical monomials.
Example:
202%0y®?plor e yos

Operations. Now we are going to study the operations between tropical monomials and polynomials
lingering on those with only one variable.

e Tropical sum between two monomials:

13



1. similar monomials:
Example:
3022205022 =30 2%
Generalisation:
a®@r®Pber® = (a®b) ® 2P = it is an internal operation.

2. with different degree:
Esempio:
4 2%" @6 2% = Polynomial made up of two addends
Generalisation:
a®z®obo 20 = Polynomial made up of two addends

e Tropical sum between two polynomials:

1. If the monomials of the first polynomial have the same degree of at least one of the monomials of
the following polynomials:
Example 1:
2202%01002%?) a8 (50 2% 660 2%%) =20 2% 6 6 © 222 = Polynomial made up of two
monomials
Generalisation:
(a®22®bo %)@ (cOr®*Bdor%) = (a®c) ©2%° @ (b®d) ®2®¢ = polinomial = it’s an
internal operation "made up of a number of monomials equal the ones that form the polynomials
of departure”
Example 2:
202661002 ® (5022536 ©2%?) =202 @ 10© 223 & 6 ® 222 = Polynomial made
up of three monomials
Generalisation:
a0z @boz%) P (cOr®®dor® ) = (a®c)© % ®bo 2% &do 2 = polinnomial
= it is an internal operation.

2. if all the monomials have a different degree:
Example:
(302320 2%?)® (6 ® 2% ®8® z) = Polynomial "made up of four monomials”
Generalisation:
a®z® b 1% @coa®” ddor®"” = polynommial "made up of a number of monomials
equal to the sum of the monomilas of departure”

e Tropical product between two monomials:
Example:
402%7 06020 =10 © 2®'2
Generalisation:
a®z?Obo 2% = (a®b) ® zP¢O¢

We can notice that the tropical product among m monomials, has always as result only one monomial
which degree is equal to the tropical product of the factors’ degrees.

e Tropical product between two polynoimials:
Example:
Bz 02012°?)0 602 0802%) = 9022011027080 2% © 10 © 2%% =
9021 ¢80 2%T @10 ® 2®3

In tropical geometry, as we already pointed out in the previous chapter, the product’s distributive
property holds upon the sum.

14



We point out some expressions that will be particularly frequent in the following part in order to avoid
misunderstanding;:

OOzr==z 1o0z=1+=x z®0 =0 2P =g

2.2 Tropical polynomials and tropical polynomial functions

Considering the first degree tropical polynomial 3 ® = @ 4, in classical mathematics there is a function
associated to it, which equation is
f(x) = min{z + 3,4}

In the cartesian coordinate system this function can be represented by dividing it in two parts y = = + 3
and y = 4, in order to study them individually. Then, considering that in the polynomial of departure
y = x+3 and y = 4 are linked from the operation of minimum, we will only consider the tracts characterized
by the smallest y.

The point A is the intersection between the two straight lines and it is the point from where we begin to
consider the straight line with null gradient rather than 1.
To find it we solve the system:

y=x+3
y=+4

whose solution is the point A(1;4).

Observing the graph it is comprehensible that what the representation of the function associated to the
first degree tropical polynomial shows is a piecewise function that in classical mathematics can be written
this way:

_Jx+3 sex<l1
= 4 sex>1

In general, given the polynomial a ® x @ b with a,b € R the two straight lines obtainable by dividing the
function associated to the tropical polynomial are:

e y = z + a, translating it into standard mathematics we can see that it is the I and III quadrant’s
bisector shifted of a vector ¥/ (0, a).

e y = b which is a straight line with null slope.

15



To find the point of intersection between the two stright lines, it is needed to form a system with the two

equations:
y=x+a / x=b—a
y=2>o r+a=>b y=2>o

and the piecewise function obtained is this:

at+x sex<b-—a
b sex>b—a

Let’s now consider a second degree tropical polynomial:

a0r®?obordec
The equation of the function of classical mathematics associated to this tropical polynomial is:
y =min{a+2z,b+ x,c}

To represent such function we have to plot indipendently the 3 functions in a Cartesian coordinate system:
y=2r+a,y=xz+band y=c.

y=xth y=2r+a

We call A the intersection between the first and the second straight line:

{y:?m—i—a { / { / = A —a;2b—a)

y=x+b 2r+a=x+b r=b—a

We call B the intersection between the second straight line, whose gradient is 1, and the third straight
line, whose slope is null:

{zij+b {x—&/—bzc {xic—b - Ble=bic)
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We call C the intersection between the first and the last straight line:
=2 / -
y=2x+a / .y N ofc-e ”
y=c 2r+a=c Tr = 2

As the straight lines are three and they always have the same slope, we can obtain three different graphs
according to the position of the intersections:

l.ifza>zp=b—a>c—b=2b>c+a

L/

= ) Fig 1.
2. ifexp=2zp=>b—a=c—-b=>2b=c+a

= Fig 2.

= \ Fig 3.

So every tropical polynomial in one variable represents a function R™ — R. While evaluating this function
in classic mathematics, we obtain the minimum of a collection of linear functions.

p(x) = min{qo, ¢ +x,q2 + 22, ..., ¢y + nx}
This functions satisfy the following properties:

e p is continuous,
e p is a piecewise function and the number of n + 1 pieces is finite,

x+ y) > p(z) +p(y)

for all z,y € R™.

e p is concave, that is
P p ( 5 5
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So every tropical polynomial in one variable is associated to a single, piecewise-defined, continuous and
concave function of classic mathematics with integer-gradient-pieces that we will name tropical polynomial
funcion.

The function that associates a tropical polynomial to the tropical polynomial function is surjective but
not injective.

Indeed, for example, the polynomial 2 ® 282 © 3 ® x @ 1 is associated to the function f(z) = min{2 +
22,3+ x, 1} while the polynomial 202®?®3®z @1 is associated to the function g(z) = min{2+2x,4+xz,1}.

So it is visible that the two polynimials are different but their associated functions are the same, as the
graphs show.

Let’s remember the following definitions of classical mathematics:

Definition 2.2.1. Two real functions with real variables f and g are equal if and only if f(x) = g(x) for each
z eR.

Definition 2.2.2. Two polynomials with the same degree p and q are equal if and only if all the coefficients
of the same-degree monomials are equal.

This leads us to the idea of creating some classes of equivalence made up with polynomials that are
associated to the same tropical polynomial function.

In order to specify this idea we will state and prove it for the following second-degree tropical polynomials
(the idea does not apply to those of firts degree, in fact the function p is bijective, while it does apply to
second or higher-degree polynomials):

Theorem 2.2.3. A second-degree tropical polynomial is an expression a ©® 22> ®bO x @ ¢ con a,b,c € R,
such that

a=d AN b=V AN c=c AN P2<abc
a0r®?@bor®c=d 0z2? Y 0rdd = or
a=a AN c=c AN bW2>a0c A VP?>a0c

Proof:

Case 1: b%2 > a0 ¢

The straight line with unitary slope encounters y = ¢ before the straight line y = ¢ intersects y = 2z + a,
so y = x + b does not affect the final graph (the one in which we consider only the edges with lower y) hence,
the polynomial of departure could be matched to another polynomial made up by a different monomial of
first degree if the polynomial satisfy the condition that 522 > a ® ¢ (see Figure 1).

This means that different polynomials with a and ¢ which respect the inequality 52 > a ® ¢ generate
equal functions in the Cartesian coordinate system.

Case 2: V92 =q 0@ c¢

In this case all the three lines are intersecting in the same point so even in this case we can avoid
considering the straight line with intermediate slope. This means that a polynomial in which %2 = a ® ¢
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and any other polynomial with the same a and ¢ and that satisfies the condition b%? = a ® ¢ are equal (see
Figure 2)
Case 3: V%2 <a®c
In this case all the straight lines influence the graph so, the functions that derive from different polyno-
mials which respect the inequality b5%? < a ® c are different (see Figure 3).
O

Distinct polynomials can represent the same function. For example, when we have %2 > ¢ ® ¢ we can
claim that the polynomial a ® 82 @ b ® = @ c is equivalent to the polynomial a ® z®? @ ¢, i.d. they are
associated to the same function. So we could name the latter as representative of the equivalence class:

ez dc={a02®?ebordc|b®? >aoc}

Remember that these polynomials are not equivalent if 522 < a ® ¢ then
ez 0bordd={a02®?dboOrdc}

i.d. the only polynomial that is equivalent to the polynomial is the polynomial itself, which is the
representative of the equivalence class.

So we can claim that the function that associates the tropical polynomials’ classes of equivalence to the
tropical polynomial functions is bijective.

Non-injectivity can be found in classical mathematics too if we consider a set made up by a finite number
of elements. In fact recalling the following result

Theorem 2.2.4 (Fermat’s little theorem). If p is a prime number, then for any integer a

aP = a(mod p)

For example, if we operate in the set Zs, made up by 0, 1, and 2, and the monomial z, we could associate
to the latter the function f(z) = x and try to substitute the three elements in order to associate 0 to 0, 1 to
1 and 2 to 2.

It’s the same if we operate similarly with the polynomial 3. Even in this case we obtain a function
g(z) = 2 which results equal to f because g(0) =0, g(1) = 1 and ¢g(2) = 8 = 2(mod3).

In other words, polynomials z and % are different but their functions, f(x) = x and g(z) = 23, appear
equal because for every x € Zs f(x) = g(z). Therefore we can state that a biunivocal relation between
function and polynomial does not exist, while it does in tropical geometry.

2.3 Factorization of polynomials

Another important issue, in comparison with classical mathematics, is the factorization of polynomials.
With very similar reasoning we can come to very interesting results.

First of all we can review the tecnique of factoring polynomials by taking a common factor which comes
from the distributive property of multiplication over addition.
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Theorem 2.3.1 (Factoring out the greatest common factor). Given a polynomial a ® x ® b with a,b € R,
the following equality is valid
aRzr®b=a0 (z® (bOa))

Proof. Applying the tropical distributive property of multiplication over addiction a® (b®¢) = (a®b) ®
(a ® ¢) we obtain
a@z®b0a)=a0zda®(bOa)=a@zdb

There is also the possibility of factoring a polynimial by grouping:

Theorem 2.3.2 (Factoring by grouping). Given a polynomial a @ x b Oz ®a®@y®bO y with a,b € R,
the following equality is valid

aRrzBbOrEaydbOYy=(a®b)O(zPy)

For the factorization of the second-degree polynomials there is theorem similar to the one valid for the
standard algebra:

Theorem 2.3.3. Given a polynomial of second degree a ©® 2% © b ® x ® ¢ with a,b, c real numbers, it can
be factorized in the form

a®xdb0a)o(xd(cOb)) if V2 <coa

or in the form
a@@Ea(coad02)® if b >coa

Proof. If b2 < ¢ ® a, to the tropical polynomial a ® %2 ® b ® z @ ¢ we can associate the function
min{2x + a,z + b, c}
According to what we saw before we can factor out a
a+ min{2z,z +b—a,c—a}

Remember that the case we are considering the case whereby 2b < ¢+ a, so b —a < ¢ — b and so adding x
to both sides we obtain z +b—a < x +c— 0.

Now we have to minimise x 4+ b — a, and if it is for sure minor than =z + ¢ — b we can add the the latter to
the terms that ha to be minimised because it surely does not have any influence:

a+min{2z,x+b—a,c—a} =a+min{2z,x+c—bx+b—a,c—a}
Applying the factoring by grouping we obtain
a+ min{z,b—a} +min{x,c— b}
that rewritten in tropical geometry becomes:
a®x®b0a)o(xd(cob))

If 892 = c®a then b—a = c— b the three straight lines intersect in the same point, thus A, B, C coincide.
c—a

2
aOxdb0a)O@E®d(cob)=a0(x®(cO®a)D2)®2

Henceb—a=c—b=

SO

If b2 > ¢ ® a, Finally, as previously shown we can affirm that

a0z 0bor®c=a02%dc
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and for the Freshman’s Dream

a0 0bordc=a010c=a0 (@ (cOa)®2)®?

Similarly we can factorize also higher-degree polynomials.

We can state that every tropical polynomial in one variable can be written as a tropical product between
first-degree tropical polynomials. Hence Fundamental theorem of algebra is valid also in the tropical
version.

Let’s consider a general n-degree polynomial:
U Oz Dap 102" 1 Da, 202" D .. Pa O Dag

If we cannot simplify any of the monomials we can easily find its nodes and consequently we can find a
way to factorize the polynomial.

Every node is given by the intersection of straight lines drown to represent the polynomial function
associated to the tropical polynomial.

The tropical monomials functions to whom are associated the functions that we will discuss have con-
secutive degrees. Our aim is to find the intersection between the straight lines with consecutive slope. For
example between straight lines with unitary slope and slope 2 and so on.

So we must plan a system of classical mathematics’ functions, associated to the tropical monomials:

y=n-z+ap // //
y=(n—1)~x+an,1 N-T+ap,=N"T—T+ap_1 T =0ap—1 — Qp

The z-coordinate of the first intersection is the difference between the coefficients of the second and first
monomial.

In wider terms, we can associate to whatever pair of monomials two classical algebraic functions. The
first function’s degree is k, and the second one’s is minor than 1. We write these as: y = (n — k) - ¢ + an—g
ey=m—k—-1)- x4 an—g_1.

The intersection between the straight lines is given by the following system:

{yz(n—k)-x—i—ank { //

y=Mm—-k—=1) 24 apn—r-1 n-r—k-rx+a,p=n-r—k-r—2+ a1

//
T =0an—k—1 — An—k

The system shows that all the nodes have as z-coordinate the difference between tropical monomials’
coefficients, whence the functions origin.
Generalizing the factorization:

Theorem 2.3.4. Given a tropical n-degree polynomial, which cannot be simplified:

028" B a, 102" ' Day 202" 2D . Dal O Dag
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it can be factorized as:

ap O (Z® (an-100a,)) ® ... © (2 (an-t-10 an-k)) ® ... © (. (ap © a1))

We can say that the Fundamental theorem of algebra holds also in the tropical version.

Theorem 2.3.5. The tropical semiring is algebraically closed.

OBSERVATION: Similarly to our mathematics we can deduct that defining the monomials as products
and the polynomials as sums or vice versa is the same since through the factorization and the distributive
property we can switch from one form to the other.

Warning. The factorization of tropical polynomials with more variables in irreducible tropical polynomials
is not unique, for example:

00260)000ye0)00020Ya0)=0020ye00z30)000zOY®0O Y ®0)

What we displayed until now gives us the idea of defining the zeros of a tropical polynomial, similarly to
the way there are defined in the classical algebra.

2.4 The roots of a tropical polynomial

In classical mathematics there is a theorem that is similar to the one proved above:

Theorem 2.4.1. Given a second-degree trinomial ax? + bx 4 ¢ with real numbers a, b, ¢, it can be factorized,
in the set of complexr numbers, in the form:

ax® + bz +c=alz — 1) (z — x2)

where 1 and o are the solutions of the quadratic equation ax® + bx + ¢ = 0. The solutions are equal if
b? — 4ac = 0, otherwise they are distinct.

The values 1 and zo are called roots of the polynomial.

Definition 2.4.2. If p(z) is a polynomial with coefficients in A, we say that an element ¢ of A is a root of
the polynomial if p(c) = 0.

So in classical mathematics the roots of the polynomial are all the numbers ¢ of A for whom p(c) = 0
and the ones for the factorization of the polynomial.

Here comes the idea to call roots of the tropical polynomial the useful values to factorize the tropical
polynomial itself.

According to the theorem [2:3.3] we call roots of the second-degree polynomial the values b® a and ¢ © b,
that are the x-coordinates of the piecewise function’s nodes.

If we substitute these values to the x variable of the polynomial we don’t obtain 0 (the zero for the
tropical addition corresponds to the infinite). Let’s try to substitute these values to the variable z; =b® a
or ro = ¢ ©® b. What we obtain is:

r=b0a r=b0a r=b0a
a0z obor®c a0 00a)®?@bo(b0a)®c |a®b®?0ad®?BbObOadc

Hence
r=b0a
b2 0adb®?20ad®c
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Thus if we substitute the xz-coordinates of the first node to the polynomial we obtain two equal addends
(%2 © a). Moreover, since b2 < c® a — ¢ > b®? © ¢ these two terms will surely be less than the third.
If we substitute the root zero ¢ © b:

r=cQ®b r=cQ®b r=cQ®b
a0z obor®c a0 (cob)®?3bo(cOb)®c |a0P?0b®?abocObdc

Hence
r=cOb
a®®?o0b?®cdc
Also in this case we obtain two equal terms (¢) and we know that they surely are less than the first:

2 <c0a—b®?0c<c@a®e—c<a®c®?0ob®.

So we can give the definition:

Definition 2.4.3. The roots of a tropical polynomial p(v) = ag®a; ©rD...Say, ®x®" are the tropical
numbers xo for which exist a pair i,j such that p(zg) = a; ® m0®1 =a; ® x?g that is two monomials became
equal or less than all the others.

Example.
For example the second-degree tropical polynomial 322 ®2®z @4 can be factorize as 26 (z & (—1))®
(z @ 2)) thus, its roots are the tropical numbers 7 = —1 e 2 = 2.

By substituting we get:
p(z1) = min{3 + 2x1,2 + x1,4} = min{1,1,4} = min{1,4} = min{2 + 21,1} =20z
p(z2) = min{3 + 2x2,2 + x2,4} = min{7,4,4} = min{7,4} = min{2 + 22,1} =2 © a2

Actually two monomials became less than or equal to the third.

OBSERVATION: we can notice that the roots of the polynomial 2® (z @ (—1)) ©® (x ® 2)) are -1 and 2
and not the opposite numbers as it happens in classical algebra.

Now we can also define the order of a root, but first remember its definition in classical mathematics:

Definition 2.4.4. Given a polynomial p(x) with coefficients in A and a root ¢ of the polynomial, the order
of c is the number k if p(x) is a multiple of the polynomial (z — c)* but not of the polynomial (z — c)**1.

In tropical geometry the idea comes from the fact that in order to have n different nodes all the straight
lines y = ¢; + iz with ¢ = 0,...,n are needed and so two consecutive segments will always have slopes
differing by 1. While, if a straight line does not contribute to the graph it will be skipped, and in the node
the difference between the slopes of the consecutive segments will be greater than 1.

Definition 2.4.5. The order of the tropical roots is given by the difference between the slopes of the two
straight-line segments adjacent to the node.

Example.

2 030206=(z®3)0(x®3) — 3 is a root of order 2, that is a double root.
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Chapter 3

Tropical algebraic curves in R?

In classical mathematics F(x;y) = 0 is an algebraic equation which represents an algebraic curve if F'
represents a finite number of operations with the variables z and y, like addition, subtraction, multiplication,
division and n root calculation.

Functions associated to polynomials of different degrees will represent different algebraic curves on the
Cartesian plane.

Example:

F(x;y) is a polynomial of first degree in x and y: the algebraic equation

F(z;y) =0 —ax+by+c=0
gives a straight line, unless a = 0A b= 0.

The points of an algebraic curve are the pairs (z,y) which satisfy the equation F(x;y) = 0 are exactly
the points (x,y), such that, substituted to the polynomial F(z;y), yield zero.

How can we extend this concept in tropical geometry?

In classical mathematics we equal the polynomial F(z;y) to zero - the neutral element of classical sum -
but the neutral element of the minimum does not exist unless we consider +oc.

If we operate in this way, we would consider tropical algebraic curves the set of points (z,y) such that,
replaced to the polynomial F(z;y), they make it +00. For example:

a0 BbeOrd®c=+0
if and only if

a=—+00Ab=4+c0ANec=4+00 or if r=4+0c0Ac=—+00

does not seem very interesting.

Furthermore, there is a difference in writing. The equation, in the function form y = f(x) in classical
mathematics, can be transformed in equation form f(z) —y = 0 and vice versa, while in tropical geometry
this is not possible because only the second principle of equivalence can be applied.

The most interesting analogy between classical and tropical mathematics is the definition of the tropical
algebraic curve as the set of tropical zeros of the polynomial F'(z;y).

Definition 3.0.1. Given a tropical polynomial F(x;y) in two variables with coefficients in R U {400}, we
define the tropical algebraic curve as the set of all the points (x,y) € R? which are the tropical zeros of

F(x;y).

It means that in tropical geometry the algebraic curve is made up by the solutions of N equations
obtained by equalling two monomials of a polynomial F'(z;y). N is equal to the k-combination C, ; with n
the number of monomial of the polynomial and e k = 2
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Example.

Basing on the above definition, the tropical curve associated to the polynomial in two variables 3® z &4
(which coincides with 3z ® +0o®y@4) consists in the points (z,y) € R? such that they make the addends
(3® z) and 4 equal. So every point (1,y) for all y € R.

Here is the graph of the tropical polynomial of first degree 3 ® = @ 4:

[l

5

Example.

The tropical algebraic curve associated to a polynomial in two variables 3 ® 22 ® 2 ® = @ 4 consists in
the points (x,y) € R? such that they make two monomials equal and less than or equal to the third one.

We factorize the polynomial like this: 2 ® (z @ (—1)) ©® (z @ 2)) so its zeros are the tropical numbers
1 = —1 e 9 = 2. Therefore the algebraic curve consists in the points (—1,y) or (2,y) for all y € R.

&

E

The graph of a tropical polynomial of n degree will be made by n different vertical straight lines at the
most.

It’s difficult to name these curves as we do in classical geometry (straight lines, circumferences, parabolas,
etc.). In fact the sketch depends on the number of monomials and not on the degree of the polynomial. In
our mathematics we make a difference between the curves basing on the degree of the polynomial because
that is important in the research of the roots. In tropical geometry we can distinguish the curves basing
on the number of monomials of the polynomial since it is more relevant to find the tropical zeros than its
degree.
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3.1 Algebraic Curves associated with a monomial

To represent a polynomial we have to equal two of its monomials and make them less than or equal to
all the others. In this case the polynomial is made by one monomial only, so we cannot form an equality
and we have to add a second monomial that does not change the polynomial. Supposing to represent the
polynomial a ® z, the second term added must have +o0o as coefficient because the infinity is the neutral
element of the sum.

Therefore the polynomial becomes a ® x @ +00 ® y.

To represent it, we have to make its two monomials equal, obtaining;:

a+Tr=+00+Y
a+x =400 Yy
T =400 Yy

So the monomial a ® x will be represented by a straight line parallel to the y-axis at an infinite distance.
We can show that a ©® x & +00 ® y is equal to a © £ & +00 ® y & +oo and they are represented by the
same graphic.

1.
a+z=-+oo+y
r =+ Yy
Condition:
a+x < 400
r < 400
Since z = +too A x < +00 = ¢ = +0
2.
a+xr =400
xr = —+00
Condition:
at+zr<y+o0
r < 400
So also in this case x = +0
3.
+00 +y = +00

+00 = +00 = Yy

Condition:
+oot+y<atzx

+oo<xr ==+

Therefore a @z ® +c0 Oy =a O x ® 400 ®y E 4o0. In fact both are represented by a straight line with
infinite slope at infinite distance from y-axis.
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3.2 Algebraic Curves associated with a binomial

Now we’ll consider some cases of curves made by two monomials. In this case, considering only polyno-
mials made by two monomials, we simply have to make them equal, without comparing them with a third

one.
Case P n

Let’s consider the polynomial x & n. In order to calculate its roots, we make its two monomials equal.

r =n, Vy.
So the graphic of this algebraic curve will be a straight line parallel to the y-axis.

Case y®dn

Let’s consider the polynomial y @ n. In order to calculate its roots we operate as we did in the previous
case.

y=mn, V.

The graphic of this algebraic curve will be a straight line parallel to the z-axis.

Case a@z®" @bEy>™

Operating in the same way:
n-x+a=m-y+b>b

n a—>b
y=—x+
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So the roots of a polynomial, which is the sum of a monomial in  and one in y of any degree, are
. . . .o.n . . . .o.oa—b
represented by a straight line with coefficient — and intersection with y-axis in .
m

In conclusion every polynomial made up by two monomials will always be a classical straight line.

3.3 Algebraic Curves associated with a trinomial

If we have polynomials made up by three monomials, we have to analyze three cases that come from the

three possible equalities we can make.

Case a@z®"PbEO Y™ dc

This case is the generalization of the ellipses in classical mathematics and if n = m = 1 we have the

tropical straight line.

1.
a+n-x=b+m-y

Condition:

This condition is equivalent to:

Condition:
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Condition:

So the representation of a polynomial that can be reduced to the form a®z®"* ©b® y®™ Pc is represented
by a ray parallel to z-axis, one parallel to y-axis and one with coefficient equal to the quotient between the

)

n m

There are some particular cases of this polynomial. For example, when n = m = 2, we obtain our
circumference. In this case and when n = m, the coefficient of the third straight line is 1, so it’s the bisector
of the first and the third quadrant.

For example the representation of the polynomial: z2 @ y? @4 is:

c—a c—b
coefficient of x and y. The three straight lines meet in the same point P < a. >

So it does not deal with the circumference of classical mathematics because it doesn’t satisfy the definition
of geometric locus (all the points belonging to a plane that is equidistant from a point).

Other examples:

plr,y) =2° 03Py

Py =z®y®0 ”tropical parabola”

plz,y) =Dy o
”tropical line” 1

”tropical line”
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Conclusions
In this work we built the structure (R U {400}, ®,®) similarly to how standard number sets are con-
structed. We obtained a tropical semiring.

As C, such semiring is algebraically closed, which means that the fundamental theorem of algebra holds in
tropical geometry.

We studied how tropical polynomials can generate tropical algebraic curves (in R? in particular) and we
got that the curve essentially depends on the number of monomials that form a polynomial rather than the
degree of such polynomial.

We drew some curves (curves of second degreein particular) and we saw that they do not look like the
curves of classical mathematics, in fact they are formed of pieces of linear functions.
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