DIMOSTRAZIONE DELL' IRRAZIONALITÁ DI UNA RADICE QUADRATA

a cura di Breda Leonardo e Vitali Marina realizzato con la supervisione del Prof. Fabio Breda I.S.I.S.S. M. Casagrande, Pieve di Soligo, a.s. 2015/16

Abstract. Ripercorrendo la famosa dimostrazione dell'irrazionalità di $\sqrt{2}$ dimostriamo l'irrazionalità di $\sqrt{3}$ e successivamente generalizzeremo per le radici quadrate di numeri non quadrati in \mathbb{N} .

Cominciamo dimostrando un lemma che ci sarà utile in seguito.

Lemma 1 Se m^2 è un multiplo di 3 allora m è multiplo di 3.

Dimostrazione.

Utilizzando la regola logica la quale afferma che $p \Rightarrow q$ equivale a $\bar{q} \Rightarrow \bar{p}$ si può dimostrare che se m non è un multiplo di 3 allora m^2 non sarà un multiplo di 3.

Se un numero non è un multiplo di 3 allora \exists k \in \mathbb{Z} tale che m=3k+1 oppure m=3k+2.

Per trovare m^2 bisogna elevare 3k + 1 o 3k + 2 alla seconda:

$$(3k+1)^2 = 9k^2 + 6k + 1$$

I termini $9k^2$ e 6k sono sicuramente multipli di 3, perciò $9k^2 + 6k + 1$ non sarà un multiplo di 3 visto che è un multiplo di 3 sommato di 1.

Lo stesso succede se si considera 3k + 2 come numero non multiplo di 3:

$$(3k+2)^2 = 9k^2 + 12k + 4 = 9k^2 + 12k + 3 + 1$$

Come prima i primi 3 termini sono multipli di 3, perciò anche $(3k+2)^2$ da come risultato un numero non multiplo di 3.

Perciò se m non è un multiplo di 3 allora m^2 non è un multiplo di $3 \Rightarrow$ se m^2 è un multiplo di 3 allora m sarà multiplo di 3.

Dimostrato ciò procediamo alla dimostrazione dell'irrazionalità della radice di 3.

Teorema 1 La radice quadrata di 3 è un numero irrazionale.

Dimostrazione.

Procediamo per assurdo: supponiamo che $\sqrt{3} \in \mathbb{Q} \Rightarrow \exists m, n \text{ con } m \in \mathbb{N}, n \in \mathbb{N}_0; (m,n)=1 \mid \frac{m}{n} = \sqrt{3}$ Se eleviamo tutto al quadrato (per riuscire a togliere $\sqrt{3}$ e quindi a lavorare con numeri naturali) ottengo:

$$\frac{m^2}{n^2} = 3$$

cioè

$$m^2 = 3n^2$$

dalla quale deduco che m^2 è un multiplo di 3. Utilizzando il lemma precedente deduco che m è multiplo di 3 dunque $\exists \lambda \in \mathbb{N} \mid m = 3\lambda$. Riscrivendo l'equazione $m^2 = 3n^2$, sostituendo m con 3λ si ottiene $(3\lambda)^2 = 3n^2$ quindi $9\lambda^2 = 3n^2$. Dividendo entrambi i membri per 3 ottengo $3\lambda^2 = n^2$. Da questa con lo stesso ragionamento precedente deduco che n^2 è multiplo di 3 quindi n è multiplo di 3.

Il fatto che m e n siano entrambi multipli di 3 non può accadere visto che m e n devono essere coprimi. Quindi la supposizione iniziale in cui si diceva che $\sqrt{3} \in \mathbb{Q}$ risulta essere falsa perciò $\sqrt{3} \notin \mathbb{Q}$.

Proviamo ora a generalizzare. Per prima cosa generalizziamo il lemma precedente.

Lemma 2 Se m^2 è un multiplo di x e x non è un quadrato allora m è un multiplo di x.

Dimostrazione.

Dato che $p \land q \Rightarrow r$ equivale a $r \land q \Rightarrow \bar{p}$ (dimostrabile attraverso l'uso delle tavole di verità) dimostreremo che se m non è multiplo di x e x non è un quadrato allora m^2 non è un multiplo di x.

Supponiamo quindi che m non sia multiplo di x e x non è un quadrato. Un numero non multiplo di x è un multiplo di x sommato ad una certa quantità minore di x quindi $\exists k \in \mathbb{N}_0 \land \exists i \in \mathbb{N}_0 (i < x) | m = xk + i$. Cioè

$$m = xk + 1$$
 \vee $m = xk + 2$ \vee $m = xk + 3$ \vee \dots \vee $m = xk + (x - 1)$

In modo simile al lemma precedente eleviamo m al quadrato, quindi $m^2 = x^2k^2 + 2xki + i^2$ e m^2 è multiplo di x se e solo se $i^2 = x$ o i^2 è multiplo di x. Quindi procediamo alla dimostrazione in due punti analizzando quando i^2 è uguale ad x o quando è multiplo di x.

La prima ipotesi è di rapida discussione: i^2 non sarà mai x perché non esiste in \mathbb{N}_0 nessun numero minore di x che elevato al quadrato sia x (x non quadrato perfetto).

La seconda invece necessita una discussione più articolata: se i^2 è multiplo di x allora $\exists h \in \mathbb{N}_0 | i^2 = xh$. Questo è impossibile perché se $\exists h \in \mathbb{N}_0 | i^2 = xh$ (h < x perché se h = x quindi $i^2 = x^2$ allora i = x ma i < x) allora xh sarebbe un quadrato ma per supposizione iniziale x non è un quadrato. Infatti perché xh sia un quadrato dato che x non lo è in h deve esserci almeno una volta il fattore x. Ciò è impossibile perché h < x. Quindi xh non potrà mai essere un quadrato a meno che non lo sia x.

Ricapitolando i^2 non è uguale a x ne multiplo di x e allora $m^2 = x^2k^2 + 2xki + i^2$ non è multiplo di x.

Teorema 2 Se x non è un quadrato di un numero naturale allora $\sqrt{x} \notin \mathbb{Q}$

Dimostrazione

Procediamo per assurdo: supponiamo che $\sqrt{x} \in \mathbb{Q} \Rightarrow \exists m, n \text{ con } m \in \mathbb{N}, n \in \mathbb{N}_0; (m,n)=1 \mid \frac{m}{n} = \sqrt{x}$. Se eleviamo tutto al quadrato (per riuscire a togliere \sqrt{x} e quindi a lavorare con numeri naturali) ottengo:

$$\boxed{\frac{m^2}{n^2} = x}$$

cioè

$$m^2 = xn^2$$

Dalla seconda formula inversa deduco che m^2 è un multiplo di x. A questo punto utilizzando il lemma appena dimostrato possiamo dire che se m^2 è un multiplo di x e x non è un quadrato perfetto allora m sarà multiplo di x. Quindi $\exists \lambda \in \mathbb{Z} \mid m = x\lambda$.

Riscrivendo l'equazione $m^2 = xn^2$, sostituendo m con $x\lambda$ si ottiene $(x\lambda)^2 = xn^2$ quindi $x^2\lambda^2 = xn^2$.

Dividendo entrambi i membri per x ottengo $x\lambda$ $^2=n^2$. Da questa con lo stesso ragionamento precedente, deduco che n è multiplo di x.

Il fatto che m e n siano entrambi multipli di x non può accadere visto che m e n devono essere coprimi. Quindi la supposizione iniziale in cui si diceva che $\sqrt{x} \in \mathbb{Q}$ risulta essere falsa perciò $\sqrt{x} \notin \mathbb{Q}$.

Si può notare come la dimostrazione del lemma 2 cade quando x è un quadrato. Infatti se, per esempio, x=9 allora se m^2 è multiplo di 9 non implica che m sia multiplo di 9. Infatti se prendiamo m=6 otteniamo che $m^2=36$ e 36 è multiplo di 9 ma m, cioè 6 non è multiplo di 9. L'ipotesi che x non sia quadrato, dunque, è fondamentale per avere la tesi che \sqrt{x} non sia razionale.